Skip to main content

REVEALER#TODO

Project description

eREVEALER

eREVEALER (enhanced REpeated eValuation of variablEs conditionAL Entropy and Redundancy) is a powerful method for identifying groups of genomic alterations that, together, associate with functional activation, gene dependency, or drug response profiles. By combining these alterations, eREVEALER explains a larger fraction of samples displaying functional target activation or sensitivity than any individual alteration considered in isolation. eREVEALER extends the capabilities of the original REVEALER by handling larger sample sizes with significantly higher speed.

Preprint is avaiable here

Alt text

Overview

eREVEALER consists of two main components: REVEALER preprocess and REVEALER run.

  • REVEALER preprocess: If you start with a MAF file or a GCT file that needs further filtering, run REVEALER preprocess first and use its output as the input for REVEALER run.
  • REVEALER run: If you have a ready-to-use GCT format matrix, you can directly run REVEALER run.

For detailed documentation regarding each parameter and workflow, refer to the individual documentation for REVEALER_preprocess and REVEALER.

Installation

Python version prerequisite

Please use Python version >= 3.7 and < 3.10

Create Conda environment

conda create -n revealer python==3.9

Install via pip

eREVEALER can be used in the command line, Jupyter Notebook, and GenePattern. To use eREVEALER in the command line or Jupyter Notebook, install it via pip:

pip install revealer

Install via cloning the repository

Alternatively, you can install eREVEALER by cloning the repository and running the setup script.

  1. Clone the repository:

    git clone https://github.com/yoshihiko1218/eREVEALER.git
    cd eREVEALER
    
  2. Install the dependencies:

    pip install -r requirements.txt
    
  3. Install the package:

    python setup.py install
    

Testing installation with an example

After you finish installing, you can test REVEALER by running

REVEALER test 

This will take approximately an hour.

Jupyter notebook Usage

Detailed example of using eREVEALER in Jupyter Notebook can be found here. eREVEALER is also available in GenePattern, allowing you to run it directly on the GenePattern server. More details can be found [here](link to genepattern module to be added).

Command line Usage

The preprocessing step offers various modes, which are explained in detail in the GenePattern documentation. Below are example commands for different modes.

Here is the command-line version of the example found here.

Download Example Input File

First, download the example input file for the CCLE dataset MAF file from this link: DepMap Public 23Q2 OmicsSomaticMutations.csv. Save it to the example/sample_input folder (or another location, as long as you indicate the path in the command).

Run File Preprocessing

REVEALER preprocess \
    --mode class \
    --input_file example/sample_input/OmicsSomaticMutations.csv \
    --protein_change_identifier ProteinChange \
    --file_separator , \
    --col_genename HugoSymbol \
    --col_class VariantType \
    --col_sample ModelID \
    --prefix CCLE \
    --out_folder example/sample_input/CCLE \
    --mode mutall

Convert Annotation from DepMap to CCLE

python example/DepMapToCCLE.py example/sample_input/NameConvert.csv example/sample_input/CCLE_Mut_All.gct example/sample_input/CCLE_Mut_All_rename.gct

Run REVEALER with Generated File and NFE2L2 Signature

REVEALER run \
    --target_file example_notebook/sample_input/CCLE_complete_sigs.gct \
    --feature_file example_notebook/sample_input/CCLE_Mut_All_rename.gct \
    --out_folder example_notebook/sample_output/NRF2 \
    --prefix CCLE_NRF2 \
    --target_name NFE2L2.V2 \
    --if_pvalue False \
    --if_bootstrap False \
    --gene_locus example_notebook/sample_input/allgeneLocus.txt \
    --tissue_file example_notebook/sample_input/TissueType_CCLE.gct

Contributing

If you would like to contribute to eREVEALER, please submit a pull request or report issues on our GitHub repository.

License

eREVEALER is licensed under the MIT License. See the LICENSE file for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

revealer-2.1.7.tar.gz (2.4 MB view details)

Uploaded Source

Built Distribution

REVEALER-2.1.7-cp39-cp39-manylinux1_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9

File details

Details for the file revealer-2.1.7.tar.gz.

File metadata

  • Download URL: revealer-2.1.7.tar.gz
  • Upload date:
  • Size: 2.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.0

File hashes

Hashes for revealer-2.1.7.tar.gz
Algorithm Hash digest
SHA256 f8f370ff925ad9f90f5c48a858a6dee5f80ddc0a1696b882ccdb28404e478251
MD5 03a8794d67b60009455f134a73db1e28
BLAKE2b-256 329b6b2f96ee0a88d188bed0cc4ce12055e090738121cbe36d84a4fca723c4b7

See more details on using hashes here.

File details

Details for the file REVEALER-2.1.7-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for REVEALER-2.1.7-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 58ae2012702ccf1e4ba8d4d18b61998f6291c8695047ef2c6cac82dd6580e72c
MD5 c5932ef3f4f412fc2d789964d96e0e44
BLAKE2b-256 cb2ab456d2289d6dde571aece8d4e9f1e5f8fc4a0e7f23754496c11687f39edd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page