Skip to main content

Approche RFPC (modèle à équations structurelles)

Project description

Regression on First Principal Component

Objectif

Cette fonction permet de calculer l'approche RFPC dans le cadre des modèles à équations structurelles.

Utilisation

Voir le notebook : RFPC_approche.ipynb pour avoir un exemple d'utilisation du module.

Requirement

  • fanalysis
  • statsmodel
  • numpy
  • pandas

Référence

Derquenne, Christian; Hallais, Clémence. Une méthode alternative à l'approche PLS : comparaison et application aux modèles conceptuels marketing. Revue de Statistique Appliquée, Tome 52 (2004) no. 3, pp. 37-72.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RFPC-0.0.2.tar.gz (2.3 kB view details)

Uploaded Source

File details

Details for the file RFPC-0.0.2.tar.gz.

File metadata

  • Download URL: RFPC-0.0.2.tar.gz
  • Upload date:
  • Size: 2.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for RFPC-0.0.2.tar.gz
Algorithm Hash digest
SHA256 7dfe237d399e9446e91368098deae6b23c8895c3f7c6b23d49bda4f6baad8ddd
MD5 f50ff6d052c9cd629921742128bce2f4
BLAKE2b-256 c763038d3bf9ba9095a55f95fce0b39a3bbda2abe3405470bdd00c942525c157

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page