Skip to main content

Reads RIS files into dictionaries via a generator for large files

Project description


>>> import os
>>> from pprint import pprint
>>> from RISparser import readris
>>> filepath = 'tests/example_full.ris'
>>> with open(filepath, 'r') as bibliography_file:
...     entries = readris(bibliography_file)
...     for entry in entries:
...         print(entry['id'])
...         print(entry['first_authors'])
['Marx, Karl', 'Lindgren, Astrid']
['Marxus, Karlus', 'Lindgren, Astrid']

Example RIS entry

ID  - 12345
T1  - Title of reference
A1  - Marx, Karl
A1  - Lindgren, Astrid
A2  - Glattauer, Daniel
Y1  - 2014//
N2  - BACKGROUND: Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.  RESULTS: Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. CONCLUSIONS: Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium.
KW  - Pippi
KW  - Nordwind
KW  - Piraten
JF  - Lorem
JA  - lorem
VL  - 9
IS  - 3
SP  - e0815
CY  - United States
PB  - Fun Factory
PB  - Fun Factory USA
SN  - 1932-6208
M1  - 1008150341
L2  -
ER  -


The most fields contain string values, but some like first_authors (A1) are parsed into lists.

Complete list of ListType tags

>>> from RISparser.config import LIST_TYPE_TAGS
>>> pprint(LIST_TYPE_TAGS)
('A1', 'A2', 'A3', 'A4', 'AU', 'KW', 'N1')

Complete default mapping

>>> from RISparser.config import TAG_KEY_MAPPING
>>> pprint(TAG_KEY_MAPPING)
{'A1': 'first_authors',
 'A2': 'secondary_authors',
 'A3': 'tertiary_authors',
 'A4': 'subsidiary_authors',
 'AB': 'abstract',
 'AD': 'author_address',
 'AN': 'accession_number',
 'AU': 'authors',
 'C1': 'custom1',
 'C2': 'custom2',
 'C3': 'custom3',
 'C4': 'custom4',
 'C5': 'custom5',
 'C6': 'custom6',
 'C7': 'custom7',
 'C8': 'custom8',
 'CA': 'caption',
 'CN': 'call_number',
 'CY': 'place_published',
 'DA': 'date',
 'DB': 'name_of_database',
 'DO': 'doi',
 'DP': 'database_provider',
 'EP': 'end_page',
 'ER': 'end_of_reference',
 'ET': 'edition',
 'ID': 'id',
 'IS': 'number',
 'J2': 'alternate_title1',
 'JA': 'alternate_title2',
 'JF': 'alternate_title3',
 'JO': 'journal_name',
 'KW': 'keywords',
 'L1': 'file_attachments1',
 'L2': 'file_attachments2',
 'L4': 'figure',
 'LA': 'language',
 'LB': 'label',
 'M1': 'note',
 'M3': 'type_of_work',
 'N1': 'notes',
 'N2': 'abstract',
 'NV': 'number_of_Volumes',
 'OP': 'original_publication',
 'PB': 'publisher',
 'PY': 'year',
 'RI': 'reviewed_item',
 'RN': 'research_notes',
 'RP': 'reprint_edition',
 'SE': 'version',
 'SN': 'issn',
 'SP': 'start_page',
 'ST': 'short_title',
 'T1': 'primary_title',
 'T2': 'secondary_title',
 'T3': 'tertiary_title',
 'TA': 'translated_author',
 'TI': 'title',
 'TT': 'translated_title',
 'TY': 'type_of_reference',
 'UK': 'unknown_tag',
 'UR': 'url',
 'VL': 'volume',
 'Y1': 'publication_year',
 'Y2': 'access_date'}

Override key mapping

The parser use a TAG_KEY_MAPPING, which one can override by calling readris() with a custom mapping.

>>> import os
>>> from RISparser import readris, TAG_KEY_MAPPING
>>> from pprint import pprint

>>> filepath = 'tests/example_full.ris'
>>> mapping = TAG_KEY_MAPPING
>>> mapping["SP"] = "pages_this_is_my_fun"
>>> with open(filepath, 'r') as bibliography_file:
...     entries = list(readris(bibliography_file, mapping=mapping))
...     pprint(sorted(entries[0].keys()))


Tests are launched via the command-line using pytest:

$ cd <path_to_the_repo>/RISparser
$ py.test

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for RISparser, version 0.4.2
Filename, size File type Python version Upload date Hashes
Filename, size RISparser-0.4.2-py3-none-any.whl (9.5 kB) File type Wheel Python version 3.6 Upload date Hashes View hashes
Filename, size RISparser-0.4.2.tar.gz (14.7 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page