Random Number Generator: API for the C++ Random library as a c-extension for Python3
Project description
RNG: Random Number Generator
Default Random Engine: Mersenne Twister 64, with hardware entropy. Additional engines and seeding strategies are planned to be available in the unbounded future. More info about MT64: https://en.wikipedia.org/wiki/Mersenne_Twister
The RNG module is not suitable for cryptography, and perfect for other non-deterministic needs like A.I. or games of chance.
Recommended Installation: $ pip install RNG
RNG is not intended to be a drop-in replacement for the Python random module, RNG is a whole different beast.
Number Types:
- Float: Python float -> long double at the C++ layer. Supports 18 digits of precision.
- Int: Python int -> long long at the C++ layer. Range:
[-2**63, 2**63)
or approximately +/- 9.2 billion billion.
Random Binary Function
random_bool(truth_factor: float) -> bool
- Bernoulli distribution.
- @param truth_factor :: the probability of True. Expected input range: [0.0, 1.0]
- @return :: True or False
Random Integer Functions
random_int(lo: int, hi: int) -> int
- Flat uniform distribution, distributed according to the discrete probability function.
- Parameter order does not matter, that is to say, it is no longer required that lo <= hi, it just works.
- @param lo :: the lower bound.
- @param hi :: the upper bound.
- @return :: random integer in the inclusive range [lo..hi]
random_binomial(number_of_trials: int, probability: float) -> int
- Based on the idea of flipping a coin and counting how many heads come up after some number of flips.
- @param number_of_trials :: how many times to flip a coin.
- @param probability :: how likely heads will be flipped. 0.50 is a fair coin.
- @return :: count of how many heads came up.
random_negative_binomial(trial_successes: int, probability: float) -> int
- Based on the idea of flipping a coin as long as it takes to succeed.
- @param trial_successes :: the required number of heads flipped to succeed.
- @param probability :: how likely heads will be flipped. 0.50 is a fair coin.
- @return :: the count of how many tails came up before the required number of heads.
random_geometric(probability: float) -> int
- Same as random_negative_binomial(1, probability).
random_poisson(mean: float) -> int
- @param mean :: sets the average output of the function.
- @return :: random integer, poisson distribution centered on the mean.
random_discrete(count: int, xmin: int, xmax: int, step: int) -> int
- @param count :: number of weighted values
- @param xmin :: smallest weight of the set
- @param xmin :: largest weight of the set
- @param step :: value stepping
Random Floating Point Functions
generate_canonical() -> float
- Evenly distributes real values of maximum precision.
- @return :: random Float in range {0.0, 1.0} biclusive. The spec defines the output range to be [0.0, 1.0).
- biclusive: feature/bug rendering the exclusivity of this function a bit more mysterious than desired. This is a known compiler bug.
random_float(lo: float, hi: float) -> float
- Suffers from the same biclusive feature/bug noted for generate_canonical().
- @param lo :: lower bound Float
- @param hi :: upper bound Float
- @return :: random Float in range {lo, hi} biclusive. The spec defines the output range to be [lo, hi).
random_normal(mean: float, std_dev: float) -> float
- @param mean :: sets the average output of the function.
- @param std_dev :: standard deviation. Specifies spread of data from the mean.
random_log_normal(log_mean: float, log_deviation: float) -> float
- @param log_mean :: sets the log of the mean of the function.
- @param log_deviation :: log of the standard deviation. Specifies spread of data from the mean.
random_exponential(lambda_rate: float) -> float
- Produces random non-negative floating-point values, distributed according to probability density function.
- @param lambda_rate :: λ constant rate of a random event per unit of time/distance.
- @return :: The time/distance until the next random event. For example, this distribution describes the time between the clicks of a Geiger counter or the distance between point mutations in a DNA strand.
random_gamma(shape: float, scale: float) -> float
- Generalization of the exponential distribution.
- Produces random positive floating-point values, distributed according to probability density function.
- @param shape :: α the number of independent exponentially distributed random variables.
- @param scale :: β the scale factor or the mean of each of the distributed random variables.
- @return :: the sum of α independent exponentially distributed random variables, each of which has a mean of β.
random_weibull(shape: float, scale: float) -> float
- Generalization of the exponential distribution.
- Similar to the gamma distribution but uses a closed form distribution function.
- Popular in reliability and survival analysis.
random_extreme_value(location: float, scale: float) -> float
- Based on Extreme Value Theory.
- Used for statistical models of the magnitude of earthquakes and volcanoes.
random_chi_squared(degrees_of_freedom: float) -> float
- Used with the Chi Squared Test and Null Hypotheses to test if sample data fits an expected distribution.
random_cauchy(location: float, scale: float) -> float
- @param location :: It specifies the location of the peak. The default value is 0.0.
- @param scale :: It represents the half-width at half-maximum. The default value is 1.0.
- @return :: Continuous Distribution.
random_fisher_f(degrees_of_freedom_1: float, degrees_of_freedom_2: float) -> float
- F distributions often arise when comparing ratios of variances.
random_student_t(degrees_of_freedom: float) -> float
- T distribution. Same as a normal distribution except it uses the sample standard deviation rather than the population standard deviation.
- As degrees_of_freedom goes to infinity it converges with the normal distribution.
piecewise_constant_distribution
coming soon- Produces real values distributed on constant subintervals.
piecewise_linear_distribution
coming soon- Produces real values distributed on defined subintervals.
Engines
mersenne_twister_engine
internal only.- Implements 64 bit Mersenne twister algorithm. Default engine on most systems.
linear_congruential_engine
coming soon- Implements linear congruential algorithm.
subtract_with_carry_engine
coming soon- Implements a subtract-with-carry (lagged Fibonacci) algorithm.
Engine Adaptors
Engine adaptors generate pseudo-random numbers using another random number engine as entropy source. They are generally used to alter the spectral characteristics of the underlying engine.
discard_block_engine
coming soon- Discards some output of a random number engine.
independent_bits_engine
coming soon- Packs the output of a random number engine into blocks of a specified number of bits.
shuffle_order_engine
maybe coming soon- Delivers the output of a random number engine in a different order.
Seeds & Entropy Source
random_device()
internal only.- Non-deterministic uniform random bit generator, although implementations are allowed to implement std::random_device using a pseudo-random number engine if there is no support for non-deterministic random number generation.
seed_seq
maybe coming soon- General-purpose bias-eliminating scrambled seed sequence generator.
- User defined seed. maybe coming soon.
Distribution & Performance Test Suite
distribution_timer(func: staticmethod, *args, **kwargs) -> None
- For brute force analysis of non-deterministic functions.
- The timer is only a rough estimate and machine dependant, so only compare results within the same test run.
- @param func :: Function to analyze. func(*args, **kwargs)
- @optional_kwarg num_cycles :: Total number of samples for the distribution tests.
- @optional_kwarg post_processor :: Used to scale a large set of data into a smaller set of groupings.
quick_test(n=1000)
- Runs a battery of preconfigured tests for each random distribution function and any associated base cases if applicable.
- @param n :: the total number of samples to collect for each test.
Development Log
RNG 0.1.12 beta
- Major Bug Fixes.
- Removed several 'foot-guns' in prep for fuzz testing in future releases.
- Major Test Suite Upgrade. Needs more documentation.
RNG 0.1.11 beta
- Fixed small bug in the install script.
RNG 0.1.10 beta
- Fixed some typos.
RNG 0.1.9 beta
- Fixed some typos.
RNG 0.1.8 beta
- Fixed some typos.
- More documentation added.
RNG 0.1.7 beta
- The
random_floating_point
function renamed torandom_float
. - The function
c_rand()
has been removed as well as all the cruft it required. - Major Documentation Upgrade.
- Fixed an issue where keyword arguments would fail to propagate. Both, positional args and kwargs now work as intended.
- Added this Dev Log.
RNG 0.0.6 alpha
- Minor ABI changes.
RNG 0.0.5 alpha
- Tests redesigned slightly for Float functions.
RNG 0.0.4 alpha
- Random Float Functions Implemented.
RNG 0.0.3 alpha
- Random Integer Functions Implemented.
RNG 0.0.2 alpha
- Random Bool Function Implemented.
RNG 0.0.1 pre-alpha
- Planning & Design.
Distribution and Performance Test Suite
RNG 0.1.12 BETA
Binary RNG Tests
Output Analysis: random_bool(truth_factor=0.3333333333333333)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 187ns
Raw Samples: False, False, True, True, False
Test Samples: 1000000
Sample Statistics:
Minimum: False
Median: 0.0
Maximum: True
Mean: 0.333644
Std Deviation: 0.4715144786641271
Sample Distribution:
False: 66.6356%
True: 33.3644%
Integer RNG Tests
Base Case for random_int:
Output Analysis: Random.randint(a=1, b=6)
Approximate Single Execution Time: Min: 1156ns, Mid: 1187ns, Max: 2250ns
Raw Samples: 6, 3, 1, 5, 6
Test Samples: 1000000
Sample Statistics:
Minimum: 1
Median: 4.0
Maximum: 6
Mean: 3.500536
Std Deviation: 1.708841312949401
Sample Distribution:
1: 16.6959%
2: 16.6451%
3: 16.6486%
4: 16.6242%
5: 16.6923%
6: 16.6939%
Output Analysis: random_int(left_limit=1, right_limit=6)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 281ns
Raw Samples: 1, 6, 4, 6, 4
Test Samples: 1000000
Sample Statistics:
Minimum: 1
Median: 3.0
Maximum: 6
Mean: 3.501395
Std Deviation: 1.707996185951822
Sample Distribution:
1: 16.6546%
2: 16.6207%
3: 16.7288%
4: 16.6269%
5: 16.6645%
6: 16.7045%
Output Analysis: random_binomial(number_of_trials=4, probability=0.5)
Approximate Single Execution Time: Min: 156ns, Mid: 187ns, Max: 437ns
Raw Samples: 2, 3, 2, 2, 1
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 2.0
Maximum: 4
Mean: 1.999595
Std Deviation: 1.0003278645678308
Sample Distribution:
0: 6.275%
1: 24.9737%
2: 37.5224%
3: 24.9746%
4: 6.2543%
Output Analysis: random_negative_binomial(number_of_trials=5, probability=0.75)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 187ns
Raw Samples: 3, 1, 4, 1, 3
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 1.0
Maximum: 15
Mean: 1.668605
Std Deviation: 1.4912674400836283
Sample Distribution:
0: 23.685%
1: 29.6666%
2: 22.2228%
3: 13.0178%
4: 6.5069%
5: 2.9241%
6: 1.2143%
7: 0.4866%
8: 0.1811%
9: 0.0588%
10: 0.0251%
11: 0.0069%
12: 0.0026%
13: 0.001%
14: 0.0003%
15: 0.0001%
Output Analysis: random_geometric(probability=0.75)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 93ns
Raw Samples: 1, 0, 2, 0, 0
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 0.0
Maximum: 11
Mean: 0.332909
Std Deviation: 0.665805557964216
Sample Distribution:
0: 75.0308%
1: 18.7108%
2: 4.7005%
3: 1.179%
4: 0.2833%
5: 0.0735%
6: 0.0163%
7: 0.0037%
8: 0.0014%
9: 0.0006%
11: 0.0001%
Output Analysis: random_poisson(mean=4.5)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 250ns
Raw Samples: 3, 2, 4, 1, 4
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 4.0
Maximum: 22
Mean: 4.499946
Std Deviation: 2.122295573482285
Sample Distribution:
0: 1.1062%
1: 4.9862%
2: 11.255%
3: 16.9261%
4: 18.9474%
5: 17.116%
6: 12.78%
7: 8.2077%
8: 4.626%
9: 2.3225%
10: 1.0513%
11: 0.429%
12: 0.165%
13: 0.058%
14: 0.0172%
15: 0.0047%
16: 0.0009%
17: 0.0005%
18: 0.0001%
19: 0.0001%
22: 0.0001%
Output Analysis: random_discrete(count=7, xmin=1, xmax=30, step=1)
Approximate Single Execution Time: Min: 500ns, Mid: 531ns, Max: 1468ns
Raw Samples: 2, 3, 3, 3, 6
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 4.0
Maximum: 6
Mean: 4.002681
Std Deviation: 1.7298210325116887
Sample Distribution:
0: 3.529%
1: 7.1089%
2: 10.7468%
3: 14.28%
4: 17.8673%
5: 21.4516%
6: 25.0164%
Floating Point RNG Tests
Base Case for generate_canonical:
Output Analysis: Random.random()
Approximate Single Execution Time: Min: 31ns, Mid: 31ns, Max: 93ns
Raw Samples: 0.665362468875466, 0.947957822835718, 0.7732052667282289, 0.24723177617196623, 0.2847948078835567
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 1.6955760417936006e-07
Median: 0.5003573633308372
Maximum: 0.9999999278038924
Mean: 0.5001202011683943
Std Deviation: 0.28895636368527927
Post-processor Distribution using round method:
0: 49.9633%
1: 50.0367%
Output Analysis: generate_canonical()
Approximate Single Execution Time: Min: 31ns, Mid: 31ns, Max: 62ns
Raw Samples: 0.7899691355259951, 0.2115580961392136, 0.11924485634180597, 0.31966524193701346, 0.9665028282293725
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 3.297363750791619e-07
Median: 0.49967507135470324
Maximum: 0.9999985995720332
Mean: 0.4995624774594023
Std Deviation: 0.2885057282833452
Post-processor Distribution using round method:
0: 50.0292%
1: 49.9708%
Output Analysis: random_float(left_limit=0.0, right_limit=10.0)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 93ns
Raw Samples: 5.876284270118109, 4.408971486351368, 2.7766722432107533, 6.774297221165701, 0.4452207877355885
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 1.9673529436082214e-06
Median: 4.995905058053005
Maximum: 9.999992236017288
Mean: 4.9950797780986855
Std Deviation: 2.8860948764742362
Post-processor Distribution using ceil method:
1: 10.017%
2: 9.9844%
3: 10.0667%
4: 10.0115%
5: 9.9616%
6: 10.0544%
7: 10.0095%
8: 9.9727%
9: 9.9107%
10: 10.0115%
Base Case for random_exponential:
Output Analysis: Random.expovariate(lambd=1.0)
Approximate Single Execution Time: Min: 375ns, Mid: 406ns, Max: 2687ns
Raw Samples: 1.384908710238084, 0.6329225743585651, 1.1779663293840221, 0.7360545390590587, 2.5186838032654166
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 9.515821902724921e-07
Median: 0.6935131717334361
Maximum: 13.193832803473704
Mean: 1.0003732833313428
Std Deviation: 1.0000266893765004
Post-processor Distribution using floor method:
0: 63.218%
1: 23.2529%
2: 8.5594%
3: 3.1297%
4: 1.1637%
5: 0.428%
6: 0.1576%
7: 0.0605%
8: 0.0188%
9: 0.0073%
10: 0.0025%
11: 0.0013%
12: 0.0002%
13: 0.0001%
Output Analysis: random_exponential(lambda_rate=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 500ns
Raw Samples: 0.4455178109900347, 0.019798829043565124, 1.960084236314644, 0.6737792153243346, 0.3036200301324886
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 7.87392539285199e-07
Median: 0.6925454838352073
Maximum: 13.806404850281261
Mean: 0.9992349999349004
Std Deviation: 0.9998804337934343
Post-processor Distribution using floor method:
0: 63.29%
1: 23.1823%
2: 8.5519%
3: 3.1602%
4: 1.1489%
5: 0.4181%
6: 0.158%
7: 0.0549%
8: 0.022%
9: 0.0083%
10: 0.0031%
11: 0.0016%
12: 0.0006%
13: 0.0001%
Base Case for random_gamma:
Output Analysis: Random.gammavariate(alpha=1.0, beta=1.0)
Approximate Single Execution Time: Min: 531ns, Mid: 562ns, Max: 1562ns
Raw Samples: 0.1120036730981629, 0.288596514467854, 1.4292200076261976, 0.6082620352247636, 3.025292360943196
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 1.3458546646558586e-06
Median: 0.6950869621497608
Maximum: 13.937324897267649
Mean: 1.0005255880421755
Std Deviation: 0.9995891000928212
Post-processor Distribution using floor method:
0: 63.1368%
1: 23.3652%
2: 8.5279%
3: 3.1291%
4: 1.1627%
5: 0.4295%
6: 0.1604%
7: 0.0546%
8: 0.0226%
9: 0.0064%
10: 0.0025%
11: 0.0014%
12: 0.0006%
13: 0.0003%
Output Analysis: random_gamma(shape=1.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 156ns
Raw Samples: 2.2986161513068795, 0.856268261312037, 0.6986203795251699, 2.0667376569243614, 0.48882949879448945
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 2.3229543874873112e-07
Median: 0.6933814925300313
Maximum: 16.380238876018392
Mean: 0.9995706626366362
Std Deviation: 0.9978855495132456
Post-processor Distribution using floor method:
0: 63.2079%
1: 23.2697%
2: 8.5675%
3: 3.1459%
4: 1.1419%
5: 0.4236%
6: 0.1548%
7: 0.0559%
8: 0.0209%
9: 0.0076%
10: 0.0029%
11: 0.0007%
12: 0.0005%
16: 0.0002%
Output Analysis: random_weibull(shape=1.0, scale=1.0)
Approximate Single Execution Time: Min: 156ns, Mid: 156ns, Max: 250ns
Raw Samples: 0.5356547797305844, 0.068398157865677, 0.9269669403718449, 0.07398596623630445, 0.5347870598609802
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 1.3927117192774708e-07
Median: 0.6934664345763201
Maximum: 14.112539985494557
Mean: 1.0001282069851674
Std Deviation: 1.0000455077035848
Post-processor Distribution using floor method:
0: 63.2026%
1: 23.2492%
2: 8.569%
3: 3.1557%
4: 1.1492%
5: 0.4253%
6: 0.1565%
7: 0.0559%
8: 0.0216%
9: 0.0099%
10: 0.0036%
11: 0.0011%
12: 0.0001%
13: 0.0002%
14: 0.0001%
Output Analysis: random_extreme_value(location=0.0, scale=1.0)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 187ns
Raw Samples: -1.1943053022404513, 1.4198532377155055, 0.2538023338768577, -0.6332535085988988, 0.9622022748389344
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -2.698691350764175
Median: 0.36694626460926594
Maximum: 14.124217944089759
Mean: 0.5768250476833159
Std Deviation: 1.2823422487043867
Post-processor Distribution using round method:
-3: 0.0003%
-2: 1.1352%
-1: 18.099%
0: 35.2663%
1: 25.4851%
2: 12.148%
3: 4.9101%
4: 1.86%
5: 0.6841%
6: 0.2619%
7: 0.093%
8: 0.0351%
9: 0.0143%
10: 0.0048%
11: 0.0018%
12: 0.0006%
13: 0.0003%
14: 0.0001%
Base Case for random_normal:
Output Analysis: Random.gauss(mu=5.0, sigma=2.0)
Approximate Single Execution Time: Min: 625ns, Mid: 656ns, Max: 1125ns
Raw Samples: 4.940537091982698, 3.2533272917806793, 7.331904123480079, 7.895007996710751, 1.8715004238405721
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -4.7812286656023435
Median: 5.004411041481515
Maximum: 16.035283651223565
Mean: 5.003388232099493
Std Deviation: 2.000093411436824
Post-processor Distribution using round method:
-5: 0.0001%
-4: 0.0011%
-3: 0.0059%
-2: 0.0504%
-1: 0.2453%
0: 0.9189%
1: 2.7618%
2: 6.5736%
3: 12.0449%
4: 17.4782%
5: 19.6532%
6: 17.5339%
7: 12.1513%
8: 6.5675%
9: 2.7925%
10: 0.926%
11: 0.2368%
12: 0.0478%
13: 0.0096%
14: 0.0011%
16: 0.0001%
Output Analysis: random_normal(mean=5.0, std_dev=2.0)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 406ns
Raw Samples: 6.896821054387403, 2.2259821390482526, 6.1966925155621135, 5.191711938385315, 4.521973218802774
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -4.323151343105488
Median: 4.997033426486281
Maximum: 15.118371252008215
Mean: 4.996139376561458
Std Deviation: 2.0017935418046746
Post-processor Distribution using round method:
-4: 0.0014%
-3: 0.008%
-2: 0.0488%
-1: 0.2443%
0: 0.9253%
1: 2.8223%
2: 6.5753%
3: 12.1066%
4: 17.5109%
5: 19.6934%
6: 17.4529%
7: 12.0317%
8: 6.5537%
9: 2.8179%
10: 0.9103%
11: 0.2404%
12: 0.0471%
13: 0.0085%
14: 0.001%
15: 0.0002%
Base Case for random_log_normal:
Output Analysis: Random.lognormvariate(mu=1.6, sigma=0.25)
Approximate Single Execution Time: Min: 875ns, Mid: 937ns, Max: 1375ns
Raw Samples: 6.732135560517046, 5.445007708381849, 3.7969512997120463, 4.324175072743914, 4.197102505392857
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 1.3092099246434619
Median: 4.9491157618393125
Maximum: 16.54370752032964
Mean: 5.108152109942813
Std Deviation: 1.2964479787653773
Post-processor Distribution using round method:
1: 0.0002%
2: 0.3172%
3: 7.909%
4: 26.888%
5: 31.2023%
6: 19.8656%
7: 8.9993%
8: 3.2968%
9: 1.0589%
10: 0.3294%
11: 0.0948%
12: 0.0291%
13: 0.0072%
14: 0.0018%
15: 0.0001%
16: 0.0002%
17: 0.0001%
Output Analysis: random_log_normal(log_mean=1.6, log_deviation=0.25)
Approximate Single Execution Time: Min: 187ns, Mid: 187ns, Max: 250ns
Raw Samples: 5.966528261843649, 4.156498510324634, 4.304660149026884, 3.8446319586392836, 3.78386357361859
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 1.5588557243013828
Median: 4.953146707233678
Maximum: 16.067562230649695
Mean: 5.111201015211827
Std Deviation: 1.298877434913344
Post-processor Distribution using round method:
2: 0.316%
3: 7.9102%
4: 26.838%
5: 31.1919%
6: 19.8384%
7: 9.0154%
8: 3.3429%
9: 1.0875%
10: 0.3282%
11: 0.0968%
12: 0.0257%
13: 0.0066%
14: 0.0019%
15: 0.0003%
16: 0.0002%
Output Analysis: random_chi_squared(degrees_of_freedom=1.0)
Approximate Single Execution Time: Min: 156ns, Mid: 187ns, Max: 593ns
Raw Samples: 0.03371388065252083, 0.5191144013965825, 0.3924971202295526, 0.8498757186681486, 1.921449571037342
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 2.726463610641794e-13
Median: 0.45398990231214187
Maximum: 23.1562359909827
Mean: 0.9983703892126362
Std Deviation: 1.412874195552223
Post-processor Distribution using floor method:
0: 68.3361%
1: 15.9883%
2: 7.3672%
3: 3.7738%
4: 2.0088%
5: 1.1008%
6: 0.617%
7: 0.3357%
8: 0.1944%
9: 0.1149%
10: 0.0692%
11: 0.0405%
12: 0.0236%
13: 0.0124%
14: 0.008%
15: 0.0037%
16: 0.0031%
17: 0.0008%
18: 0.0006%
19: 0.0008%
20: 0.0001%
21: 0.0001%
23: 0.0001%
Output Analysis: random_cauchy(location=0.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 156ns
Raw Samples: 0.08320374629685201, 1.331991267593043, 1.475657928077641, 0.37409929787086277, -0.6546748901491992
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -344475.4939877482
Median: 0.003185727693504345
Maximum: 108745.02117269565
Mean: -0.748560721002727
Std Deviation: 493.4933617789858
Post-processor Distribution using floor_mod_10 method:
0: 26.1011%
1: 11.3465%
2: 5.7057%
3: 3.8047%
4: 3.1228%
5: 3.1332%
6: 3.794%
7: 5.6726%
8: 11.2839%
9: 26.0355%
Output Analysis: random_fisher_f(degrees_of_freedom_1=8.0, degrees_of_freedom_2=8.0)
Approximate Single Execution Time: Min: 343ns, Mid: 375ns, Max: 406ns
Raw Samples: 2.33300344246744, 0.3386774713420087, 0.42999794923145873, 0.8382789352604338, 0.4977586326690908
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 0.011508397337115296
Median: 1.000360378192011
Maximum: 63.631747659089505
Mean: 1.3350473834495895
Std Deviation: 1.243134064837772
Post-processor Distribution using floor method:
0: 49.9806%
1: 32.6681%
2: 10.2498%
3: 3.7388%
4: 1.5771%
5: 0.7667%
6: 0.3947%
7: 0.2212%
8: 0.1297%
9: 0.0857%
10: 0.0534%
11: 0.0356%
12: 0.024%
13: 0.0183%
14: 0.0116%
15: 0.0096%
16: 0.0073%
17: 0.0045%
18: 0.0047%
19: 0.003%
20: 0.0022%
21: 0.0021%
22: 0.0014%
23: 0.0015%
24: 0.0008%
25: 0.001%
26: 0.0008%
27: 0.0011%
28: 0.0007%
29: 0.0004%
30: 0.0003%
31: 0.0004%
32: 0.0002%
33: 0.0005%
34: 0.0004%
35: 0.0001%
36: 0.0001%
37: 0.0003%
38: 0.0004%
40: 0.0001%
42: 0.0001%
43: 0.0001%
45: 0.0001%
49: 0.0002%
53: 0.0001%
55: 0.0001%
63: 0.0001%
Output Analysis: random_student_t(degrees_of_freedom=8.0)
Approximate Single Execution Time: Min: 218ns, Mid: 250ns, Max: 812ns
Raw Samples: 0.6559188880695308, -0.03653765521785164, -1.488394093370608, -0.42678547647829446, 1.7662915657173328
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -12.38228193001556
Median: -0.00025264886625567533
Maximum: 11.816282198317431
Mean: -0.0007172606813375191
Std Deviation: 1.155660971912555
Post-processor Distribution using round method:
-12: 0.0003%
-10: 0.0002%
-9: 0.0004%
-8: 0.0019%
-7: 0.0067%
-6: 0.0162%
-5: 0.0697%
-4: 0.3133%
-3: 1.4424%
-2: 6.8191%
-1: 22.9018%
0: 36.8806%
1: 22.954%
2: 6.7255%
3: 1.4577%
4: 0.3082%
5: 0.0754%
6: 0.0183%
7: 0.0052%
8: 0.0021%
9: 0.0004%
10: 0.0001%
11: 0.0003%
12: 0.0002%
Process finished with exit code 0
All tests passed!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file RNG-0.1.12.tar.gz
.
File metadata
- Download URL: RNG-0.1.12.tar.gz
- Upload date:
- Size: 91.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3d72b15865736cfd15c919949ad8afae8d788a6e01038f85b289caf14bd5efaa |
|
MD5 | 73b7106183642d7f6e310142f164d7c7 |
|
BLAKE2b-256 | 3788dd4aef33dc9eb86268bd58063ed8d4108fcdb465953d8e4d15f65c0e42b4 |
File details
Details for the file RNG-0.1.12-cp37-cp37m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: RNG-0.1.12-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 94.8 kB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a366fbf7769589d2bdbf26f3da977ef5e53773faee95d5a9358f7b1962b5c068 |
|
MD5 | a8bc3358916bf388d7491a96fa041ad1 |
|
BLAKE2b-256 | fb45812c5f8f176184e4a022f1c3042e0cb4f7fe5972ffb7130c7fb23e1742db |