Skip to main content

Random Number Generator: API for the C++ Random library as a c-extension for Python3

Project description

RNG: Random Number Generator

Default Random Engine: Mersenne Twister 64, with hardware entropy. Additional engines and seeding strategies are planned to be available in the unbounded future. More info about MT64: https://en.wikipedia.org/wiki/Mersenne_Twister

The RNG module is not suitable for cryptography, and perfect for other non-deterministic needs like A.I. or games of chance.

Recommended Installation: $ pip install RNG

RNG is not intended to be a drop-in replacement for the Python random module, RNG is a whole different beast.

Number Types:

  • Float: Python float -> long double at the C++ layer. Supports 18 digits of precision.
  • Int: Python int -> long long at the C++ layer. Range: [-2**63, 2**63) or approximately +/- 9.2 billion billion.

Random Binary Function

  • random_bool(truth_factor: float) -> bool
    • Bernoulli distribution.
    • @param truth_factor :: the probability of True. Expected input range: [0.0, 1.0]
    • @return :: True or False

Random Integer Functions

  • random_int(lo: int, hi: int) -> int
    • Flat uniform distribution, distributed according to the discrete probability function.
    • Parameter order does not matter, that is to say, it is no longer required that lo <= hi, it just works.
    • @param lo :: the lower bound.
    • @param hi :: the upper bound.
    • @return :: random integer in the inclusive range [lo..hi]
  • random_binomial(number_of_trials: int, probability: float) -> int
    • Based on the idea of flipping a coin and counting how many heads come up after some number of flips.
    • @param number_of_trials :: how many times to flip a coin.
    • @param probability :: how likely heads will be flipped. 0.50 is a fair coin.
    • @return :: count of how many heads came up.
  • random_negative_binomial(trial_successes: int, probability: float) -> int
    • Based on the idea of flipping a coin as long as it takes to succeed.
    • @param trial_successes :: the required number of heads flipped to succeed.
    • @param probability :: how likely heads will be flipped. 0.50 is a fair coin.
    • @return :: the count of how many tails came up before the required number of heads.
  • random_geometric(probability: float) -> int
    • Same as random_negative_binomial(1, probability).
  • random_poisson(mean: float) -> int
    • @param mean :: sets the average output of the function.
    • @return :: random integer, poisson distribution centered on the mean.
  • random_discrete(count: int, xmin: int, xmax: int, step: int) -> int
    • @param count :: number of weighted values
    • @param xmin :: smallest weight of the set
    • @param xmin :: largest weight of the set
    • @param step :: value stepping

Random Floating Point Functions

  • generate_canonical() -> float
    • Evenly distributes real values of maximum precision.
    • @return :: random Float in range {0.0, 1.0} biclusive. The spec defines the output range to be [0.0, 1.0).
      • biclusive: feature/bug rendering the exclusivity of this function a bit more mysterious than desired. This is a known compiler bug.
  • random_float(lo: float, hi: float) -> float
    • Suffers from the same biclusive feature/bug noted for generate_canonical().
    • @param lo :: lower bound Float
    • @param hi :: upper bound Float
    • @return :: random Float in range {lo, hi} biclusive. The spec defines the output range to be [lo, hi).
  • random_normal(mean: float, std_dev: float) -> float
    • @param mean :: sets the average output of the function.
    • @param std_dev :: standard deviation. Specifies spread of data from the mean.
  • random_log_normal(log_mean: float, log_deviation: float) -> float
    • @param log_mean :: sets the log of the mean of the function.
    • @param log_deviation :: log of the standard deviation. Specifies spread of data from the mean.
  • random_exponential(lambda_rate: float) -> float
    • Produces random non-negative floating-point values, distributed according to probability density function.
    • @param lambda_rate :: λ constant rate of a random event per unit of time/distance.
    • @return :: The time/distance until the next random event. For example, this distribution describes the time between the clicks of a Geiger counter or the distance between point mutations in a DNA strand.
  • random_gamma(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Produces random positive floating-point values, distributed according to probability density function.
    • @param shape :: α the number of independent exponentially distributed random variables.
    • @param scale :: β the scale factor or the mean of each of the distributed random variables.
    • @return :: the sum of α independent exponentially distributed random variables, each of which has a mean of β.
  • random_weibull(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Similar to the gamma distribution but uses a closed form distribution function.
    • Popular in reliability and survival analysis.
  • random_extreme_value(location: float, scale: float) -> float
    • Based on Extreme Value Theory.
    • Used for statistical models of the magnitude of earthquakes and volcanoes.
  • random_chi_squared(degrees_of_freedom: float) -> float
    • Used with the Chi Squared Test and Null Hypotheses to test if sample data fits an expected distribution.
  • random_cauchy(location: float, scale: float) -> float
    • @param location :: It specifies the location of the peak. The default value is 0.0.
    • @param scale :: It represents the half-width at half-maximum. The default value is 1.0.
    • @return :: Continuous Distribution.
  • random_fisher_f(degrees_of_freedom_1: float, degrees_of_freedom_2: float) -> float
    • F distributions often arise when comparing ratios of variances.
  • random_student_t(degrees_of_freedom: float) -> float
    • T distribution. Same as a normal distribution except it uses the sample standard deviation rather than the population standard deviation.
    • As degrees_of_freedom goes to infinity it converges with the normal distribution.
  • piecewise_constant_distribution coming soon
    • Produces real values distributed on constant subintervals.
  • piecewise_linear_distribution coming soon
    • Produces real values distributed on defined subintervals.

Engines

  • mersenne_twister_engine internal only.
    • Implements 64 bit Mersenne twister algorithm. Default engine on most systems.
  • linear_congruential_engine coming soon
    • Implements linear congruential algorithm.
  • subtract_with_carry_engine coming soon
    • Implements a subtract-with-carry (lagged Fibonacci) algorithm.

Engine Adaptors

Engine adaptors generate pseudo-random numbers using another random number engine as entropy source. They are generally used to alter the spectral characteristics of the underlying engine.

  • discard_block_engine coming soon
    • Discards some output of a random number engine.
  • independent_bits_engine coming soon
    • Packs the output of a random number engine into blocks of a specified number of bits.
  • shuffle_order_engine maybe coming soon
    • Delivers the output of a random number engine in a different order.

Seeds & Entropy Source

  • random_device() internal only.
    • Non-deterministic uniform random bit generator, although implementations are allowed to implement std::random_device using a pseudo-random number engine if there is no support for non-deterministic random number generation.
  • seed_seq maybe coming soon
    • General-purpose bias-eliminating scrambled seed sequence generator.
  • User defined seed. maybe coming soon.

Distribution & Performance Test Suite

  • distribution_timer(func: staticmethod, *args, **kwargs) -> None
    • For brute force analysis of non-deterministic functions.
    • The timer is only a rough estimate and machine dependant, so only compare results within the same test run.
    • @param func :: Function to analyze. func(*args, **kwargs)
    • @optional_kwarg num_cycles :: Total number of samples for the distribution tests.
    • @optional_kwarg post_processor :: Used to scale a large set of data into a smaller set of groupings.
  • quick_test(n=1000)
    • Runs a battery of preconfigured tests for each random distribution function and any associated base cases if applicable.
    • @param n :: the total number of samples to collect for each test.

Development Log

RNG 0.1.12 beta
  • Major Bug Fixes.
    • Removed several 'foot-guns' in prep for fuzz testing in future releases.
  • Major Test Suite Upgrade. Needs more documentation.
RNG 0.1.11 beta
  • Fixed small bug in the install script.
RNG 0.1.10 beta
  • Fixed some typos.
RNG 0.1.9 beta
  • Fixed some typos.
RNG 0.1.8 beta
  • Fixed some typos.
  • More documentation added.
RNG 0.1.7 beta
  • The random_floating_point function renamed to random_float.
  • The function c_rand() has been removed as well as all the cruft it required.
  • Major Documentation Upgrade.
  • Fixed an issue where keyword arguments would fail to propagate. Both, positional args and kwargs now work as intended.
  • Added this Dev Log.
RNG 0.0.6 alpha
  • Minor ABI changes.
RNG 0.0.5 alpha
  • Tests redesigned slightly for Float functions.
RNG 0.0.4 alpha
  • Random Float Functions Implemented.
RNG 0.0.3 alpha
  • Random Integer Functions Implemented.
RNG 0.0.2 alpha
  • Random Bool Function Implemented.
RNG 0.0.1 pre-alpha
  • Planning & Design.

Distribution and Performance Test Suite

RNG 0.1.12 BETA

Binary RNG Tests

Output Analysis: random_bool(truth_factor=0.3333333333333333)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 187ns
Raw Samples: False, False, True, True, False
Test Samples: 1000000
Sample Statistics:
 Minimum: False
 Median: 0.0
 Maximum: True
 Mean: 0.333644
 Std Deviation: 0.4715144786641271
Sample Distribution:
 False: 66.6356%
 True: 33.3644%


Integer RNG Tests

Base Case for random_int:
Output Analysis: Random.randint(a=1, b=6)
Approximate Single Execution Time: Min: 1156ns, Mid: 1187ns, Max: 2250ns
Raw Samples: 6, 3, 1, 5, 6
Test Samples: 1000000
Sample Statistics:
 Minimum: 1
 Median: 4.0
 Maximum: 6
 Mean: 3.500536
 Std Deviation: 1.708841312949401
Sample Distribution:
 1: 16.6959%
 2: 16.6451%
 3: 16.6486%
 4: 16.6242%
 5: 16.6923%
 6: 16.6939%

Output Analysis: random_int(left_limit=1, right_limit=6)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 281ns
Raw Samples: 1, 6, 4, 6, 4
Test Samples: 1000000
Sample Statistics:
 Minimum: 1
 Median: 3.0
 Maximum: 6
 Mean: 3.501395
 Std Deviation: 1.707996185951822
Sample Distribution:
 1: 16.6546%
 2: 16.6207%
 3: 16.7288%
 4: 16.6269%
 5: 16.6645%
 6: 16.7045%

Output Analysis: random_binomial(number_of_trials=4, probability=0.5)
Approximate Single Execution Time: Min: 156ns, Mid: 187ns, Max: 437ns
Raw Samples: 2, 3, 2, 2, 1
Test Samples: 1000000
Sample Statistics:
 Minimum: 0
 Median: 2.0
 Maximum: 4
 Mean: 1.999595
 Std Deviation: 1.0003278645678308
Sample Distribution:
 0: 6.275%
 1: 24.9737%
 2: 37.5224%
 3: 24.9746%
 4: 6.2543%

Output Analysis: random_negative_binomial(number_of_trials=5, probability=0.75)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 187ns
Raw Samples: 3, 1, 4, 1, 3
Test Samples: 1000000
Sample Statistics:
 Minimum: 0
 Median: 1.0
 Maximum: 15
 Mean: 1.668605
 Std Deviation: 1.4912674400836283
Sample Distribution:
 0: 23.685%
 1: 29.6666%
 2: 22.2228%
 3: 13.0178%
 4: 6.5069%
 5: 2.9241%
 6: 1.2143%
 7: 0.4866%
 8: 0.1811%
 9: 0.0588%
 10: 0.0251%
 11: 0.0069%
 12: 0.0026%
 13: 0.001%
 14: 0.0003%
 15: 0.0001%

Output Analysis: random_geometric(probability=0.75)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 93ns
Raw Samples: 1, 0, 2, 0, 0
Test Samples: 1000000
Sample Statistics:
 Minimum: 0
 Median: 0.0
 Maximum: 11
 Mean: 0.332909
 Std Deviation: 0.665805557964216
Sample Distribution:
 0: 75.0308%
 1: 18.7108%
 2: 4.7005%
 3: 1.179%
 4: 0.2833%
 5: 0.0735%
 6: 0.0163%
 7: 0.0037%
 8: 0.0014%
 9: 0.0006%
 11: 0.0001%

Output Analysis: random_poisson(mean=4.5)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 250ns
Raw Samples: 3, 2, 4, 1, 4
Test Samples: 1000000
Sample Statistics:
 Minimum: 0
 Median: 4.0
 Maximum: 22
 Mean: 4.499946
 Std Deviation: 2.122295573482285
Sample Distribution:
 0: 1.1062%
 1: 4.9862%
 2: 11.255%
 3: 16.9261%
 4: 18.9474%
 5: 17.116%
 6: 12.78%
 7: 8.2077%
 8: 4.626%
 9: 2.3225%
 10: 1.0513%
 11: 0.429%
 12: 0.165%
 13: 0.058%
 14: 0.0172%
 15: 0.0047%
 16: 0.0009%
 17: 0.0005%
 18: 0.0001%
 19: 0.0001%
 22: 0.0001%

Output Analysis: random_discrete(count=7, xmin=1, xmax=30, step=1)
Approximate Single Execution Time: Min: 500ns, Mid: 531ns, Max: 1468ns
Raw Samples: 2, 3, 3, 3, 6
Test Samples: 1000000
Sample Statistics:
 Minimum: 0
 Median: 4.0
 Maximum: 6
 Mean: 4.002681
 Std Deviation: 1.7298210325116887
Sample Distribution:
 0: 3.529%
 1: 7.1089%
 2: 10.7468%
 3: 14.28%
 4: 17.8673%
 5: 21.4516%
 6: 25.0164%


Floating Point RNG Tests

Base Case for generate_canonical:
Output Analysis: Random.random()
Approximate Single Execution Time: Min: 31ns, Mid: 31ns, Max: 93ns
Raw Samples: 0.665362468875466, 0.947957822835718, 0.7732052667282289, 0.24723177617196623, 0.2847948078835567
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 1.6955760417936006e-07
 Median: 0.5003573633308372
 Maximum: 0.9999999278038924
 Mean: 0.5001202011683943
 Std Deviation: 0.28895636368527927
Post-processor Distribution using round method:
 0: 49.9633%
 1: 50.0367%

Output Analysis: generate_canonical()
Approximate Single Execution Time: Min: 31ns, Mid: 31ns, Max: 62ns
Raw Samples: 0.7899691355259951, 0.2115580961392136, 0.11924485634180597, 0.31966524193701346, 0.9665028282293725
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 3.297363750791619e-07
 Median: 0.49967507135470324
 Maximum: 0.9999985995720332
 Mean: 0.4995624774594023
 Std Deviation: 0.2885057282833452
Post-processor Distribution using round method:
 0: 50.0292%
 1: 49.9708%

Output Analysis: random_float(left_limit=0.0, right_limit=10.0)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 93ns
Raw Samples: 5.876284270118109, 4.408971486351368, 2.7766722432107533, 6.774297221165701, 0.4452207877355885
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 1.9673529436082214e-06
 Median: 4.995905058053005
 Maximum: 9.999992236017288
 Mean: 4.9950797780986855
 Std Deviation: 2.8860948764742362
Post-processor Distribution using ceil method:
 1: 10.017%
 2: 9.9844%
 3: 10.0667%
 4: 10.0115%
 5: 9.9616%
 6: 10.0544%
 7: 10.0095%
 8: 9.9727%
 9: 9.9107%
 10: 10.0115%

Base Case for random_exponential:
Output Analysis: Random.expovariate(lambd=1.0)
Approximate Single Execution Time: Min: 375ns, Mid: 406ns, Max: 2687ns
Raw Samples: 1.384908710238084, 0.6329225743585651, 1.1779663293840221, 0.7360545390590587, 2.5186838032654166
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 9.515821902724921e-07
 Median: 0.6935131717334361
 Maximum: 13.193832803473704
 Mean: 1.0003732833313428
 Std Deviation: 1.0000266893765004
Post-processor Distribution using floor method:
 0: 63.218%
 1: 23.2529%
 2: 8.5594%
 3: 3.1297%
 4: 1.1637%
 5: 0.428%
 6: 0.1576%
 7: 0.0605%
 8: 0.0188%
 9: 0.0073%
 10: 0.0025%
 11: 0.0013%
 12: 0.0002%
 13: 0.0001%

Output Analysis: random_exponential(lambda_rate=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 500ns
Raw Samples: 0.4455178109900347, 0.019798829043565124, 1.960084236314644, 0.6737792153243346, 0.3036200301324886
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 7.87392539285199e-07
 Median: 0.6925454838352073
 Maximum: 13.806404850281261
 Mean: 0.9992349999349004
 Std Deviation: 0.9998804337934343
Post-processor Distribution using floor method:
 0: 63.29%
 1: 23.1823%
 2: 8.5519%
 3: 3.1602%
 4: 1.1489%
 5: 0.4181%
 6: 0.158%
 7: 0.0549%
 8: 0.022%
 9: 0.0083%
 10: 0.0031%
 11: 0.0016%
 12: 0.0006%
 13: 0.0001%

Base Case for random_gamma:
Output Analysis: Random.gammavariate(alpha=1.0, beta=1.0)
Approximate Single Execution Time: Min: 531ns, Mid: 562ns, Max: 1562ns
Raw Samples: 0.1120036730981629, 0.288596514467854, 1.4292200076261976, 0.6082620352247636, 3.025292360943196
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 1.3458546646558586e-06
 Median: 0.6950869621497608
 Maximum: 13.937324897267649
 Mean: 1.0005255880421755
 Std Deviation: 0.9995891000928212
Post-processor Distribution using floor method:
 0: 63.1368%
 1: 23.3652%
 2: 8.5279%
 3: 3.1291%
 4: 1.1627%
 5: 0.4295%
 6: 0.1604%
 7: 0.0546%
 8: 0.0226%
 9: 0.0064%
 10: 0.0025%
 11: 0.0014%
 12: 0.0006%
 13: 0.0003%

Output Analysis: random_gamma(shape=1.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 156ns
Raw Samples: 2.2986161513068795, 0.856268261312037, 0.6986203795251699, 2.0667376569243614, 0.48882949879448945
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 2.3229543874873112e-07
 Median: 0.6933814925300313
 Maximum: 16.380238876018392
 Mean: 0.9995706626366362
 Std Deviation: 0.9978855495132456
Post-processor Distribution using floor method:
 0: 63.2079%
 1: 23.2697%
 2: 8.5675%
 3: 3.1459%
 4: 1.1419%
 5: 0.4236%
 6: 0.1548%
 7: 0.0559%
 8: 0.0209%
 9: 0.0076%
 10: 0.0029%
 11: 0.0007%
 12: 0.0005%
 16: 0.0002%

Output Analysis: random_weibull(shape=1.0, scale=1.0)
Approximate Single Execution Time: Min: 156ns, Mid: 156ns, Max: 250ns
Raw Samples: 0.5356547797305844, 0.068398157865677, 0.9269669403718449, 0.07398596623630445, 0.5347870598609802
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 1.3927117192774708e-07
 Median: 0.6934664345763201
 Maximum: 14.112539985494557
 Mean: 1.0001282069851674
 Std Deviation: 1.0000455077035848
Post-processor Distribution using floor method:
 0: 63.2026%
 1: 23.2492%
 2: 8.569%
 3: 3.1557%
 4: 1.1492%
 5: 0.4253%
 6: 0.1565%
 7: 0.0559%
 8: 0.0216%
 9: 0.0099%
 10: 0.0036%
 11: 0.0011%
 12: 0.0001%
 13: 0.0002%
 14: 0.0001%

Output Analysis: random_extreme_value(location=0.0, scale=1.0)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 187ns
Raw Samples: -1.1943053022404513, 1.4198532377155055, 0.2538023338768577, -0.6332535085988988, 0.9622022748389344
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: -2.698691350764175
 Median: 0.36694626460926594
 Maximum: 14.124217944089759
 Mean: 0.5768250476833159
 Std Deviation: 1.2823422487043867
Post-processor Distribution using round method:
 -3: 0.0003%
 -2: 1.1352%
 -1: 18.099%
 0: 35.2663%
 1: 25.4851%
 2: 12.148%
 3: 4.9101%
 4: 1.86%
 5: 0.6841%
 6: 0.2619%
 7: 0.093%
 8: 0.0351%
 9: 0.0143%
 10: 0.0048%
 11: 0.0018%
 12: 0.0006%
 13: 0.0003%
 14: 0.0001%

Base Case for random_normal:
Output Analysis: Random.gauss(mu=5.0, sigma=2.0)
Approximate Single Execution Time: Min: 625ns, Mid: 656ns, Max: 1125ns
Raw Samples: 4.940537091982698, 3.2533272917806793, 7.331904123480079, 7.895007996710751, 1.8715004238405721
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: -4.7812286656023435
 Median: 5.004411041481515
 Maximum: 16.035283651223565
 Mean: 5.003388232099493
 Std Deviation: 2.000093411436824
Post-processor Distribution using round method:
 -5: 0.0001%
 -4: 0.0011%
 -3: 0.0059%
 -2: 0.0504%
 -1: 0.2453%
 0: 0.9189%
 1: 2.7618%
 2: 6.5736%
 3: 12.0449%
 4: 17.4782%
 5: 19.6532%
 6: 17.5339%
 7: 12.1513%
 8: 6.5675%
 9: 2.7925%
 10: 0.926%
 11: 0.2368%
 12: 0.0478%
 13: 0.0096%
 14: 0.0011%
 16: 0.0001%

Output Analysis: random_normal(mean=5.0, std_dev=2.0)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 406ns
Raw Samples: 6.896821054387403, 2.2259821390482526, 6.1966925155621135, 5.191711938385315, 4.521973218802774
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: -4.323151343105488
 Median: 4.997033426486281
 Maximum: 15.118371252008215
 Mean: 4.996139376561458
 Std Deviation: 2.0017935418046746
Post-processor Distribution using round method:
 -4: 0.0014%
 -3: 0.008%
 -2: 0.0488%
 -1: 0.2443%
 0: 0.9253%
 1: 2.8223%
 2: 6.5753%
 3: 12.1066%
 4: 17.5109%
 5: 19.6934%
 6: 17.4529%
 7: 12.0317%
 8: 6.5537%
 9: 2.8179%
 10: 0.9103%
 11: 0.2404%
 12: 0.0471%
 13: 0.0085%
 14: 0.001%
 15: 0.0002%

Base Case for random_log_normal:
Output Analysis: Random.lognormvariate(mu=1.6, sigma=0.25)
Approximate Single Execution Time: Min: 875ns, Mid: 937ns, Max: 1375ns
Raw Samples: 6.732135560517046, 5.445007708381849, 3.7969512997120463, 4.324175072743914, 4.197102505392857
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 1.3092099246434619
 Median: 4.9491157618393125
 Maximum: 16.54370752032964
 Mean: 5.108152109942813
 Std Deviation: 1.2964479787653773
Post-processor Distribution using round method:
 1: 0.0002%
 2: 0.3172%
 3: 7.909%
 4: 26.888%
 5: 31.2023%
 6: 19.8656%
 7: 8.9993%
 8: 3.2968%
 9: 1.0589%
 10: 0.3294%
 11: 0.0948%
 12: 0.0291%
 13: 0.0072%
 14: 0.0018%
 15: 0.0001%
 16: 0.0002%
 17: 0.0001%

Output Analysis: random_log_normal(log_mean=1.6, log_deviation=0.25)
Approximate Single Execution Time: Min: 187ns, Mid: 187ns, Max: 250ns
Raw Samples: 5.966528261843649, 4.156498510324634, 4.304660149026884, 3.8446319586392836, 3.78386357361859
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 1.5588557243013828
 Median: 4.953146707233678
 Maximum: 16.067562230649695
 Mean: 5.111201015211827
 Std Deviation: 1.298877434913344
Post-processor Distribution using round method:
 2: 0.316%
 3: 7.9102%
 4: 26.838%
 5: 31.1919%
 6: 19.8384%
 7: 9.0154%
 8: 3.3429%
 9: 1.0875%
 10: 0.3282%
 11: 0.0968%
 12: 0.0257%
 13: 0.0066%
 14: 0.0019%
 15: 0.0003%
 16: 0.0002%

Output Analysis: random_chi_squared(degrees_of_freedom=1.0)
Approximate Single Execution Time: Min: 156ns, Mid: 187ns, Max: 593ns
Raw Samples: 0.03371388065252083, 0.5191144013965825, 0.3924971202295526, 0.8498757186681486, 1.921449571037342
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 2.726463610641794e-13
 Median: 0.45398990231214187
 Maximum: 23.1562359909827
 Mean: 0.9983703892126362
 Std Deviation: 1.412874195552223
Post-processor Distribution using floor method:
 0: 68.3361%
 1: 15.9883%
 2: 7.3672%
 3: 3.7738%
 4: 2.0088%
 5: 1.1008%
 6: 0.617%
 7: 0.3357%
 8: 0.1944%
 9: 0.1149%
 10: 0.0692%
 11: 0.0405%
 12: 0.0236%
 13: 0.0124%
 14: 0.008%
 15: 0.0037%
 16: 0.0031%
 17: 0.0008%
 18: 0.0006%
 19: 0.0008%
 20: 0.0001%
 21: 0.0001%
 23: 0.0001%

Output Analysis: random_cauchy(location=0.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 156ns
Raw Samples: 0.08320374629685201, 1.331991267593043, 1.475657928077641, 0.37409929787086277, -0.6546748901491992
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: -344475.4939877482
 Median: 0.003185727693504345
 Maximum: 108745.02117269565
 Mean: -0.748560721002727
 Std Deviation: 493.4933617789858
Post-processor Distribution using floor_mod_10 method:
 0: 26.1011%
 1: 11.3465%
 2: 5.7057%
 3: 3.8047%
 4: 3.1228%
 5: 3.1332%
 6: 3.794%
 7: 5.6726%
 8: 11.2839%
 9: 26.0355%

Output Analysis: random_fisher_f(degrees_of_freedom_1=8.0, degrees_of_freedom_2=8.0)
Approximate Single Execution Time: Min: 343ns, Mid: 375ns, Max: 406ns
Raw Samples: 2.33300344246744, 0.3386774713420087, 0.42999794923145873, 0.8382789352604338, 0.4977586326690908
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: 0.011508397337115296
 Median: 1.000360378192011
 Maximum: 63.631747659089505
 Mean: 1.3350473834495895
 Std Deviation: 1.243134064837772
Post-processor Distribution using floor method:
 0: 49.9806%
 1: 32.6681%
 2: 10.2498%
 3: 3.7388%
 4: 1.5771%
 5: 0.7667%
 6: 0.3947%
 7: 0.2212%
 8: 0.1297%
 9: 0.0857%
 10: 0.0534%
 11: 0.0356%
 12: 0.024%
 13: 0.0183%
 14: 0.0116%
 15: 0.0096%
 16: 0.0073%
 17: 0.0045%
 18: 0.0047%
 19: 0.003%
 20: 0.0022%
 21: 0.0021%
 22: 0.0014%
 23: 0.0015%
 24: 0.0008%
 25: 0.001%
 26: 0.0008%
 27: 0.0011%
 28: 0.0007%
 29: 0.0004%
 30: 0.0003%
 31: 0.0004%
 32: 0.0002%
 33: 0.0005%
 34: 0.0004%
 35: 0.0001%
 36: 0.0001%
 37: 0.0003%
 38: 0.0004%
 40: 0.0001%
 42: 0.0001%
 43: 0.0001%
 45: 0.0001%
 49: 0.0002%
 53: 0.0001%
 55: 0.0001%
 63: 0.0001%

Output Analysis: random_student_t(degrees_of_freedom=8.0)
Approximate Single Execution Time: Min: 218ns, Mid: 250ns, Max: 812ns
Raw Samples: 0.6559188880695308, -0.03653765521785164, -1.488394093370608, -0.42678547647829446, 1.7662915657173328
Test Samples: 1000000
Pre-processor Statistics:
 Minimum: -12.38228193001556
 Median: -0.00025264886625567533
 Maximum: 11.816282198317431
 Mean: -0.0007172606813375191
 Std Deviation: 1.155660971912555
Post-processor Distribution using round method:
 -12: 0.0003%
 -10: 0.0002%
 -9: 0.0004%
 -8: 0.0019%
 -7: 0.0067%
 -6: 0.0162%
 -5: 0.0697%
 -4: 0.3133%
 -3: 1.4424%
 -2: 6.8191%
 -1: 22.9018%
 0: 36.8806%
 1: 22.954%
 2: 6.7255%
 3: 1.4577%
 4: 0.3082%
 5: 0.0754%
 6: 0.0183%
 7: 0.0052%
 8: 0.0021%
 9: 0.0004%
 10: 0.0001%
 11: 0.0003%
 12: 0.0002%


Process finished with exit code 0
All tests passed!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RNG-0.1.12.tar.gz (91.0 kB view details)

Uploaded Source

Built Distribution

RNG-0.1.12-cp37-cp37m-macosx_10_9_x86_64.whl (94.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file RNG-0.1.12.tar.gz.

File metadata

  • Download URL: RNG-0.1.12.tar.gz
  • Upload date:
  • Size: 91.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2

File hashes

Hashes for RNG-0.1.12.tar.gz
Algorithm Hash digest
SHA256 3d72b15865736cfd15c919949ad8afae8d788a6e01038f85b289caf14bd5efaa
MD5 73b7106183642d7f6e310142f164d7c7
BLAKE2b-256 3788dd4aef33dc9eb86268bd58063ed8d4108fcdb465953d8e4d15f65c0e42b4

See more details on using hashes here.

File details

Details for the file RNG-0.1.12-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: RNG-0.1.12-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 94.8 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2

File hashes

Hashes for RNG-0.1.12-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a366fbf7769589d2bdbf26f3da977ef5e53773faee95d5a9358f7b1962b5c068
MD5 a8bc3358916bf388d7491a96fa041ad1
BLAKE2b-256 fb45812c5f8f176184e4a022f1c3042e0cb4f7fe5972ffb7130c7fb23e1742db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page