Random Number Generator: Complete API for the C++ Random library as a c-extension for Python3
Project description
RNG: Random Number Generator
RNG is not suitable for cryptography, but it could be perfect for other random stuff, data science, experimental programming, A.I. and games.
Recommended Installation: $ pip install RNG
Number Types & Sizes:
- Float: Python float -> double at the C++ layer.
- Integer: Python int -> long long at the C++ layer.
- Input & Output Range:
(-2**63, 2**63)
or approximately +/- 9.2 billion billion.
- Input & Output Range:
Random Binary Function
random_bool(truth_factor: float) -> bool
- Bernoulli distribution.
- @param truth_factor :: the probability of True. Expected input range: [0.0, 1.0]
- @return :: True or False
Random Integer Functions
random_int(left_limit: int, right_limit: int) -> int
- Flat uniform distribution, distributed according to the discrete probability function.
- Parameter order does not matter, that is to say, it is no longer required that lo <= hi, it just works.
- @param left_limit :: input A.
- @param right_limit :: input B.
- @return :: random integer in the inclusive range [A, B]
random_below(upper_bound: int) -> int
- Featuring The Typhoon Engine.
- Flat uniform distribution.
- @param upper_bound :: inout A
- @return :: random integer in exclusive range [0, A) or (A, 0] if A < 0
random_binomial(number_of_trials: int, probability: float) -> int
- Based on the idea of flipping a coin and counting how many heads come up after some number of flips.
- @param number_of_trials :: how many times to flip a coin.
- @param probability :: how likely heads will be flipped. 0.5 is a fair coin. 1.0 is a double headed coin.
- @return :: count of how many heads came up.
random_negative_binomial(trial_successes: int, probability: float) -> int
- Based on the idea of flipping a coin as long as it takes to succeed.
- @param trial_successes :: the required number of heads flipped to succeed.
- @param probability :: how likely heads will be flipped. 0.50 is a fair coin.
- @return :: the count of how many tails came up before the required number of heads.
random_geometric(probability: float) -> int
- Same as random_negative_binomial(1, probability).
random_poisson(mean: float) -> int
- @param mean :: sets the average output of the function.
- @return :: random integer, poisson distribution centered on the mean.
random_discrete(count: int, xmin: int, xmax: int) -> int
- @param count :: number of weighted values
- @param xmin :: smallest weight of the set
- @param xmin :: largest weight of the set
Random Floating Point Functions
generate_canonical() -> float
- Evenly distributes real values of maximum precision.
- @return :: random Float in range {0.0, 1.0} biclusive. The spec defines the output range to be [0.0, 1.0).
- biclusive: feature/bug rendering the exclusivity of this function a bit more mysterious than desired. This is a known compiler bug.
random_float(left_limit: float, right_limit: float) -> float
- Suffers from the same biclusive feature/bug noted for generate_canonical().
- @param left_limit :: input A
- @param right_limit :: input B
- @return :: random Float in range {A, B} biclusive. The spec defines the output range to be [A, B).
random_normal(mean: float, std_dev: float) -> float
- @param mean :: sets the average output of the function.
- @param std_dev :: standard deviation. Specifies spread of data from the mean.
random_log_normal(log_mean: float, log_deviation: float) -> float
- @param log_mean :: sets the log of the mean of the function.
- @param log_deviation :: log of the standard deviation. Specifies spread of data from the mean.
random_exponential(lambda_rate: float) -> float
- Produces random non-negative floating-point values, distributed according to probability density function.
- @param lambda_rate :: λ constant rate of a random event per unit of time/distance.
- @return :: The time/distance until the next random event. For example, this distribution describes the time between the clicks of a Geiger counter or the distance between point mutations in a DNA strand.
random_gamma(shape: float, scale: float) -> float
- Generalization of the exponential distribution.
- Produces random positive floating-point values, distributed according to probability density function.
- @param shape :: α the number of independent exponentially distributed random variables.
- @param scale :: β the scale factor or the mean of each of the distributed random variables.
- @return :: the sum of α independent exponentially distributed random variables, each of which has a mean of β.
random_weibull(shape: float, scale: float) -> float
- Generalization of the exponential distribution.
- Similar to the gamma distribution but uses a closed form distribution function.
- Popular in reliability and survival analysis.
random_extreme_value(location: float, scale: float) -> float
- Based on Extreme Value Theory.
- Used for statistical models of the magnitude of earthquakes and volcanoes.
random_chi_squared(degrees_of_freedom: float) -> float
- Used with the Chi Squared Test and Null Hypotheses to test if sample data fits an expected distribution.
random_cauchy(location: float, scale: float) -> float
- @param location :: It specifies the location of the peak. The default value is 0.0.
- @param scale :: It represents the half-width at half-maximum. The default value is 1.0.
- @return :: Continuous Distribution.
random_fisher_f(degrees_of_freedom_1: float, degrees_of_freedom_2: float) -> float
- F distributions often arise when comparing ratios of variances.
random_student_t(degrees_of_freedom: float) -> float
- T distribution. Same as a normal distribution except it uses the sample standard deviation rather than the population standard deviation.
- As degrees_of_freedom goes to infinity it converges with the normal distribution.
piecewise_constant_distribution
coming soon- Produces real values distributed on constant subintervals.
piecewise_linear_distribution
coming soon- Produces real values distributed on defined subintervals.
Engines
mersenne_twister_engine
- Implements 64 bit Mersenne twister algorithm. Default engine on most systems.
linear_congruential_engine
- Implements linear congruential algorithm.
subtract_with_carry_engine
- Implements a subtract-with-carry (lagged Fibonacci) algorithm.
Engine Adaptors
Engine adaptors generate pseudo-random numbers using another random number engine as entropy source. They are generally used to alter the spectral characteristics of the underlying engine.
discard_block_engine
- Discards some output of a random number engine.
independent_bits_engine
- Packs the output of a random number engine into blocks of a specified number of bits.
shuffle_order_engine
- Delivers the output of a random number engine in a different order.
Seeds & Entropy Source
random_device
- Non-deterministic uniform random bit generator, although implementations are allowed to implement random_device using a pseudo-random number engine if there is no support for non-deterministic random number generation.
seed_seq
- General-purpose bias-eliminating scrambled seed sequence generator.
- User defined seed. maybe coming soon.
Distribution & Performance Test Suite
distribution_timer(func: staticmethod, *args, **kwargs) -> None
- For statistical analysis of non-deterministic functions.
- @param func :: Function method or lambda to analyze. func(*args, **kwargs)
- @optional_kw num_cycles :: Total number of samples for the distribution tests.
- @optional_kw post_processor :: Used to scale a large set of data into a smaller set of groupings.
quick_test(n=10000)
- Runs a battery of tests for each random distribution function.
- @param n :: the total number of samples to collect for each test. Default: 10,000
Development Log
RNG 0.1.19 beta
- Broke some fixed typos, for a change of pace.
RNG 0.1.18 beta
- Fixed some typos.
RNG 0.1.17 beta
- Major Refactoring.
- New primary engine: Hurricane.
- Experimental engine Typhoon added: random_below() only.
RNG 0.1.16 beta
- Internal Engine Performance Tuning.
RNG 0.1.15 beta
- Engine Testing.
RNG 0.1.14 beta
- Fixed a few typos.
RNG 0.1.13 beta
- Fixed a few typos.
RNG 0.1.12 beta
- Major Test Suite Upgrade.
- Major Bug Fixes.
- Removed several 'foot-guns' in prep for fuzz testing in future releases.
RNG 0.1.11 beta
- Fixed small bug in the install script.
RNG 0.1.10 beta
- Fixed some typos.
RNG 0.1.9 beta
- Fixed some typos.
RNG 0.1.8 beta
- Fixed some typos.
- More documentation added.
RNG 0.1.7 beta
- The
random_floating_point
function renamed torandom_float
. - The function
c_rand()
has been removed as well as all the cruft it required. - Major Documentation Upgrade.
- Fixed an issue where keyword arguments would fail to propagate. Both, positional args and kwargs now work as intended.
- Added this Dev Log.
RNG 0.0.6 alpha
- Minor ABI changes.
RNG 0.0.5 alpha
- Tests redesigned slightly for Float functions.
RNG 0.0.4 alpha
- Random Float Functions Implemented.
RNG 0.0.3 alpha
- Random Integer Functions Implemented.
RNG 0.0.2 alpha
- Random Bool Function Implemented.
RNG 0.0.1 pre-alpha
- Planning & Design.
Distribution and Performance Test Suite
RNG Quick Test: Hurricane Engine
Min Integer: -9223372036854775807
Max Integer: 9223372036854775807
Min Float: -1.7976931348623157e+308
Max Float: 1.7976931348623157e+308
Min Below Zero: -5e-324
Min Above Zero: 5e-324
Binary Tests
Output Analysis: random_bool(truth_factor=0.3333333333333333)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 281ns
Raw Samples: False, True, False, False, False
Test Samples: 1000000
Sample Statistics:
Minimum: False
Median: 0.0
Maximum: True
Mean: 0.333513
Std Deviation: 0.47146823977156843
Sample Distribution:
False: 66.6487%
True: 33.3513%
Integer Tests
Base Case for random_int:
Output Analysis: Random.randint(a=1, b=6)
Approximate Single Execution Time: Min: 1187ns, Mid: 1250ns, Max: 3625ns
Raw Samples: 4, 4, 4, 2, 4
Test Samples: 1000000
Sample Statistics:
Minimum: 1
Median: 3.0
Maximum: 6
Mean: 3.499715
Std Deviation: 1.7073045521124326
Sample Distribution:
1: 16.6453%
2: 16.6847%
3: 16.706%
4: 16.6221%
5: 16.701%
6: 16.6409%
Output Analysis: random_int(left_limit=1, right_limit=6)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 156ns
Raw Samples: 1, 5, 4, 2, 6
Test Samples: 1000000
Sample Statistics:
Minimum: 1
Median: 3.0
Maximum: 6
Mean: 3.497492
Std Deviation: 1.7089407919570034
Sample Distribution:
1: 16.7291%
2: 16.698%
3: 16.6397%
4: 16.6276%
5: 16.639%
6: 16.6666%
Typhoon Engine:
Output Analysis: random_below(upper_bound=6)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 937ns
Raw Samples: 4, 0, 2, 2, 5
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 3.0
Maximum: 5
Mean: 2.501864
Std Deviation: 1.7074007850301114
Sample Distribution:
0: 16.6147%
1: 16.6673%
2: 16.6801%
3: 16.697%
4: 16.6366%
5: 16.7043%
Output Analysis: random_binomial(number_of_trials=4, probability=0.5)
Approximate Single Execution Time: Min: 187ns, Mid: 187ns, Max: 281ns
Raw Samples: 1, 2, 2, 4, 3
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 2.0
Maximum: 4
Mean: 2.000732
Std Deviation: 0.9995501304469242
Sample Distribution:
0: 6.2083%
1: 25.0387%
2: 37.4793%
3: 25.0189%
4: 6.2548%
Output Analysis: random_negative_binomial(number_of_trials=5, probability=0.75)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 218ns
Raw Samples: 1, 0, 0, 5, 1
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 1.0
Maximum: 17
Mean: 1.667842
Std Deviation: 1.491791301917694
Sample Distribution:
0: 23.6981%
1: 29.6548%
2: 22.303%
3: 12.9467%
4: 6.4832%
5: 2.9323%
6: 1.2263%
7: 0.4717%
8: 0.1807%
9: 0.0673%
10: 0.0239%
11: 0.0078%
12: 0.0022%
13: 0.0016%
14: 0.0002%
15: 0.0001%
17: 0.0001%
Output Analysis: random_geometric(probability=0.75)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 156ns
Raw Samples: 0, 0, 0, 0, 0
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 0.0
Maximum: 9
Mean: 0.333196
Std Deviation: 0.6670298872710806
Sample Distribution:
0: 75.0359%
1: 18.6944%
2: 4.7088%
3: 1.1648%
4: 0.3007%
5: 0.0698%
6: 0.0191%
7: 0.0053%
8: 0.0011%
9: 0.0001%
Output Analysis: random_poisson(mean=4.5)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 406ns
Raw Samples: 7, 4, 7, 6, 4
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 4.0
Maximum: 19
Mean: 4.50258
Std Deviation: 2.1232093282617828
Sample Distribution:
0: 1.1166%
1: 4.9826%
2: 11.2378%
3: 16.9127%
4: 18.9217%
5: 17.0505%
6: 12.8048%
7: 8.2521%
8: 4.6868%
9: 2.3388%
10: 1.0259%
11: 0.4297%
12: 0.1581%
13: 0.0556%
14: 0.0186%
15: 0.0051%
16: 0.0019%
17: 0.0004%
18: 0.0002%
19: 0.0001%
Output Analysis: random_discrete(count=7, xmin=1, xmax=30)
Approximate Single Execution Time: Min: 562ns, Mid: 593ns, Max: 937ns
Raw Samples: 6, 4, 5, 6, 3
Test Samples: 1000000
Sample Statistics:
Minimum: 0
Median: 4.0
Maximum: 6
Mean: 4.004473
Std Deviation: 1.7299554864264528
Sample Distribution:
0: 3.5324%
1: 7.1023%
2: 10.7147%
3: 14.2666%
4: 17.8702%
5: 21.4478%
6: 25.066%
Floating Point Tests
Base Case for generate_canonical:
Output Analysis: Random.random()
Approximate Single Execution Time: Min: 31ns, Mid: 46ns, Max: 62ns
Raw Samples: 0.6570047697196703, 0.15224885571692315, 0.3016126670295707, 0.27907194383835776, 0.7574862846673812
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 2.9815953883627344e-07
Median: 0.49949096543909177
Maximum: 0.9999995187658669
Mean: 0.4997294571076714
Std Deviation: 0.2887497663042492
Post-processor Distribution using round method:
0: 50.0497%
1: 49.9503%
Output Analysis: generate_canonical()
Approximate Single Execution Time: Min: 31ns, Mid: 62ns, Max: 125ns
Raw Samples: 0.6970074952603725, 0.9119397436113943, 0.9346890033668273, 0.9217520201011971, 0.9566401834440911
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 3.0367002228985336e-06
Median: 0.4993868783055178
Maximum: 0.999999989509601
Mean: 0.49962081680742315
Std Deviation: 0.2886834892383035
Post-processor Distribution using round method:
0: 50.064%
1: 49.936%
Output Analysis: random_float(left_limit=0.0, right_limit=10.0)
Approximate Single Execution Time: Min: 62ns, Mid: 77ns, Max: 687ns
Raw Samples: 7.250072331699807, 2.19419532526034, 9.565847452510264, 2.0359165984956977, 4.82969972900843
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 4.615397130295251e-06
Median: 4.997286628857793
Maximum: 9.999993060485252
Mean: 4.998945688758831
Std Deviation: 2.888279348290616
Post-processor Distribution using ceil method:
1: 10.0294%
2: 9.9813%
3: 10.0128%
4: 10.01%
5: 9.9948%
6: 10.0037%
7: 9.9569%
8: 9.9782%
9: 10.0292%
10: 10.0037%
Base Case for random_exponential:
Output Analysis: Random.expovariate(lambd=1.0)
Approximate Single Execution Time: Min: 468ns, Mid: 468ns, Max: 812ns
Raw Samples: 1.1018688812063477, 0.6024554673121082, 1.6686416144822886, 0.9164516490715121, 0.15661897291107288
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 3.3318097247187586e-07
Median: 0.6933721837616083
Maximum: 14.549105438967956
Mean: 1.0001227529087031
Std Deviation: 1.0005268303436308
Post-processor Distribution using floor_mod_10 method:
0: 63.2201%
1: 23.2263%
2: 8.5896%
3: 3.126%
4: 1.1697%
5: 0.42%
6: 0.16%
7: 0.0581%
8: 0.0212%
9: 0.009%
Output Analysis: random_exponential(lambda_rate=1.0)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 625ns
Raw Samples: 0.07386087703511517, 0.5796138698566454, 0.4366800971494448, 2.5902206566536905, 0.5612743127963082
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 1.5956204111521102e-06
Median: 0.6928729297653928
Maximum: 13.085196366919934
Mean: 1.0000879939397769
Std Deviation: 0.9994077363036815
Post-processor Distribution using floor_mod_10 method:
0: 63.2424%
1: 23.2246%
2: 8.5672%
3: 3.1512%
4: 1.1513%
5: 0.4252%
6: 0.1501%
7: 0.0589%
8: 0.0217%
9: 0.0074%
Base Case for random_gamma:
Output Analysis: Random.gammavariate(alpha=1.0, beta=1.0)
Approximate Single Execution Time: Min: 656ns, Mid: 687ns, Max: 1125ns
Raw Samples: 0.31952797125019106, 2.9110574593309626, 1.507787243375767, 0.5079294444335829, 0.37442602347488985
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 1.5189774997716145e-08
Median: 0.6935264267270171
Maximum: 14.730821845424648
Mean: 0.9997367170432164
Std Deviation: 0.9987025439965271
Post-processor Distribution using floor_mod_10 method:
0: 63.1864%
1: 23.3231%
2: 8.5553%
3: 3.1248%
4: 1.1499%
5: 0.4176%
6: 0.1522%
7: 0.0586%
8: 0.0237%
9: 0.0084%
Output Analysis: random_gamma(shape=1.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 218ns
Raw Samples: 1.659711871275316, 0.9281337345048667, 0.9640420158146191, 0.926760092156792, 1.6379990730513747
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 4.194584151559329e-07
Median: 0.6910225528579438
Maximum: 13.544102671589854
Mean: 0.9981751157717323
Std Deviation: 0.9979388234147085
Post-processor Distribution using floor_mod_10 method:
0: 63.2934%
1: 23.1918%
2: 8.5666%
3: 3.1235%
4: 1.1716%
5: 0.4164%
6: 0.1501%
7: 0.0602%
8: 0.0198%
9: 0.0066%
Output Analysis: random_weibull(shape=1.0, scale=1.0)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 718ns
Raw Samples: 0.4816125736713127, 1.37504844647496, 0.17476034816547142, 0.6737209810700767, 0.40694034561013837
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 7.293946316920661e-07
Median: 0.693660798796579
Maximum: 12.928130970544212
Mean: 1.0014375097409594
Std Deviation: 1.0034697986553105
Post-processor Distribution using floor_mod_10 method:
0: 63.1496%
1: 23.2699%
2: 8.5896%
3: 3.1477%
4: 1.1571%
5: 0.4314%
6: 0.1614%
7: 0.0612%
8: 0.0229%
9: 0.0092%
Output Analysis: random_extreme_value(location=0.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 218ns
Raw Samples: 8.755189280896964, 1.194033732536873, 1.2684866265139922, 1.3447492505523024, -0.4218304682806628
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -2.727102044096202
Median: 0.36527548204890337
Maximum: 15.845177261761595
Mean: 0.5759963198306385
Std Deviation: 1.2819436444760983
Post-processor Distribution using round method:
-3: 0.0008%
-2: 1.1423%
-1: 18.1057%
0: 35.3232%
1: 25.4256%
2: 12.1522%
3: 4.8859%
4: 1.8689%
5: 0.6831%
6: 0.2586%
7: 0.0984%
8: 0.0356%
9: 0.0119%
10: 0.005%
11: 0.0018%
12: 0.0007%
14: 0.0001%
16: 0.0002%
Base Case for random_normal:
Output Analysis: Random.gauss(mu=5.0, sigma=2.0)
Approximate Single Execution Time: Min: 718ns, Mid: 718ns, Max: 1187ns
Raw Samples: 6.300763276240546, 1.794491443283512, 5.198255642441661, 4.726653498300128, 5.518522425054493
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -5.298297695835354
Median: 5.000649683218311
Maximum: 14.056745918354773
Mean: 5.001638655916973
Std Deviation: 1.9991343569491313
Post-processor Distribution using round method:
-5: 0.0001%
-4: 0.0013%
-3: 0.0081%
-2: 0.0494%
-1: 0.2312%
0: 0.9296%
1: 2.7835%
2: 6.559%
3: 12.0424%
4: 17.4838%
5: 19.7402%
6: 17.4687%
7: 12.1565%
8: 6.5254%
9: 2.8079%
10: 0.9218%
11: 0.2346%
12: 0.0486%
13: 0.0069%
14: 0.001%
Output Analysis: random_normal(mean=5.0, std_dev=2.0)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 250ns
Raw Samples: 1.0323867658347494, 6.630004237421952, 2.8829346314043462, 7.518046479914521, 5.012168864358874
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -4.970879933162836
Median: 4.999800412668707
Maximum: 14.927920090816256
Mean: 4.999574230845622
Std Deviation: 1.9995376817999204
Post-processor Distribution using round method:
-5: 0.0001%
-4: 0.0009%
-3: 0.0078%
-2: 0.0486%
-1: 0.2497%
0: 0.931%
1: 2.7631%
2: 6.5322%
3: 12.154%
4: 17.4644%
5: 19.7271%
6: 17.4248%
7: 12.1475%
8: 6.5528%
9: 2.7816%
10: 0.9142%
11: 0.2457%
12: 0.0461%
13: 0.0074%
14: 0.0008%
15: 0.0002%
Base Case for random_log_normal:
Output Analysis: Random.lognormvariate(mu=1.6, sigma=0.25)
Approximate Single Execution Time: Min: 1000ns, Mid: 1093ns, Max: 1468ns
Raw Samples: 4.134952691559435, 4.411991171895773, 4.315384669101187, 5.025571391824962, 4.2588612031488315
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 1.2537749127366524
Median: 4.95223696948567
Maximum: 20.278351569884403
Mean: 5.109536606294799
Std Deviation: 1.299854786332313
Post-processor Distribution using round method:
1: 0.0001%
2: 0.3052%
3: 7.9529%
4: 26.8665%
5: 31.1629%
6: 19.8398%
7: 9.0017%
8: 3.3003%
9: 1.1084%
10: 0.3306%
11: 0.0939%
12: 0.0277%
13: 0.0075%
14: 0.0017%
15: 0.0005%
16: 0.0001%
18: 0.0001%
20: 0.0001%
Output Analysis: random_log_normal(log_mean=1.6, log_deviation=0.25)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 281ns
Raw Samples: 4.638566203068009, 6.488569436892637, 4.746135513863415, 9.043467938363431, 5.495642596245647
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 1.293629829698226
Median: 4.956065050948405
Maximum: 15.52340281958146
Mean: 5.112381442906878
Std Deviation: 1.2984785016330378
Post-processor Distribution using round method:
1: 0.0001%
2: 0.3069%
3: 7.8998%
4: 26.7776%
5: 31.2469%
6: 19.9085%
7: 9.0007%
8: 3.3119%
9: 1.0726%
10: 0.3384%
11: 0.0952%
12: 0.0305%
13: 0.0075%
14: 0.0023%
15: 0.001%
16: 0.0001%
Output Analysis: random_chi_squared(degrees_of_freedom=1.0)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 281ns
Raw Samples: 1.8682538839390197, 0.1417458922993199, 0.35609409265427794, 0.10488140810614487, 0.0537827928584459
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 2.1198627145029897e-12
Median: 0.45560153411558757
Maximum: 21.441173685147888
Mean: 0.9999549710727771
Std Deviation: 1.4121520350785501
Post-processor Distribution using floor_mod_10 method:
0: 68.3143%
1: 16.0487%
2: 7.4482%
3: 3.8009%
4: 2.0053%
5: 1.1056%
6: 0.6216%
7: 0.3505%
8: 0.1957%
9: 0.1092%
Output Analysis: random_cauchy(location=0.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 250ns
Raw Samples: -0.5314701578336324, 0.09423819174982691, 0.0064472189131502475, -26.05628572449915, 0.83766832973519
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -792640.7171117909
Median: 0.0017499052419489148
Maximum: 467179.39816305996
Mean: -0.4710975417831596
Std Deviation: 1159.7291680368085
Post-processor Distribution using floor_mod_10 method:
0: 26.0603%
1: 11.3498%
2: 5.697%
3: 3.798%
4: 3.1417%
5: 3.1362%
6: 3.7826%
7: 5.7139%
8: 11.3031%
9: 26.0174%
Output Analysis: random_fisher_f(degrees_of_freedom_1=8.0, degrees_of_freedom_2=8.0)
Approximate Single Execution Time: Min: 218ns, Mid: 250ns, Max: 656ns
Raw Samples: 0.8213120498960351, 0.880247304396062, 0.9794153235132154, 0.6848216175255734, 0.6540665752635523
Test Samples: 1000000
Pre-processor Statistics:
Minimum: 0.01697910105829946
Median: 1.0007647509684978
Maximum: 161.6347427592095
Mean: 1.335511566842662
Std Deviation: 1.26567995129718
Post-processor Distribution using floor_mod_10 method:
0: 50.0205%
1: 32.6974%
2: 10.3344%
3: 3.717%
4: 1.6027%
5: 0.7697%
6: 0.4078%
7: 0.2212%
8: 0.1402%
9: 0.0891%
Output Analysis: random_student_t(degrees_of_freedom=8.0)
Approximate Single Execution Time: Min: 156ns, Mid: 187ns, Max: 312ns
Raw Samples: 1.0636774816078634, -0.12042681077334667, -0.3233596860824123, 1.8924021728239548, 0.03240701144977185
Test Samples: 1000000
Pre-processor Statistics:
Minimum: -11.347507412744367
Median: 0.0001797843119758288
Maximum: 15.741851962630925
Mean: 0.0006966434111483332
Std Deviation: 1.1528091788818284
Post-processor Distribution using round method:
-11: 0.0001%
-10: 0.0002%
-9: 0.0006%
-8: 0.0022%
-7: 0.0046%
-6: 0.0179%
-5: 0.0726%
-4: 0.3052%
-3: 1.44%
-2: 6.7055%
-1: 22.9215%
0: 37.0059%
1: 22.9333%
2: 6.7552%
3: 1.436%
4: 0.3012%
5: 0.0708%
6: 0.0187%
7: 0.0046%
8: 0.0022%
9: 0.0011%
10: 0.0003%
11: 0.0002%
16: 0.0001%
=========================================================================
Total Test Time: 92.9885 seconds
All tests passed!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
RNG-0.1.19.tar.gz
(108.9 kB
view details)
Built Distribution
File details
Details for the file RNG-0.1.19.tar.gz
.
File metadata
- Download URL: RNG-0.1.19.tar.gz
- Upload date:
- Size: 108.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 341eef28cc7e8d402254e867cb9422b3c39180f69d81440fa7d4cd2eb1b7133a |
|
MD5 | 838117980d35e8fc7f740d2c49eadb78 |
|
BLAKE2b-256 | ff9d220bc338591b3fd6af2c050488efbb66ea536c1de775a6d231439916cddf |
File details
Details for the file RNG-0.1.19-cp37-cp37m-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: RNG-0.1.19-cp37-cp37m-macosx_10_9_x86_64.whl
- Upload date:
- Size: 122.5 kB
- Tags: CPython 3.7m, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0712850a3b5dc42f2abae275ca32c74865fd31c1b0dc94504781455def6db515 |
|
MD5 | dca5b78ec7f0625de7255f7811808550 |
|
BLAKE2b-256 | 39e938f7d032205b783e4b0bdbd05f1ee9c43daa71b63584bdf1b9363ee71f4e |