Skip to main content

Random Number Generator: Complete API for the C++ Random library as a c-extension for Python3

Project description

Random Number Generator: RNG Storm Engine

RNG is not suitable for cryptography, but it could be perfect for other random stuff, data science, experimental programming, A.I. and games.

Recommended Installation: $ pip install RNG

Number Types, Precision & Size:

  • Float: Python float -> double at the C++ layer.

    • Min Float: -1.7976931348623157e+308
    • Max Float: 1.7976931348623157e+308
    • Min Below Zero: -5e-324
    • Min Above Zero: 5e-324
  • Integer: Python int -> long long at the C++ layer.

    • Input & Output Range: (-2**63, 2**63) or approximately +/- 9.2 billion billion.
    • Min Integer: -9223372036854775807
    • Max Integer: 9223372036854775807

Random Binary Function

  • random_bool(truth_factor: float) -> bool
    • Bernoulli distribution.
    • @param truth_factor :: the probability of True. Expected input range: [0.0, 1.0]
    • @return :: True or False

Random Integer Functions

  • random_int(left_limit: int, right_limit: int) -> int
    • Flat uniform distribution, distributed according to the discrete probability function.
    • Parameter order does not matter, that is to say, it is no longer required that lo <= hi, it just works.
    • @param left_limit :: input A.
    • @param right_limit :: input B.
    • @return :: random integer in the inclusive range [A, B]
  • random_below(upper_bound: int) -> int
    • Featuring The Typhoon Engine.
    • Flat uniform distribution.
    • @param upper_bound :: inout A
    • @return :: random integer in exclusive range [0, A) or (A, 0] if A < 0
  • random_binomial(number_of_trials: int, probability: float) -> int
    • Based on the idea of flipping a coin and counting how many heads come up after some number of flips.
    • @param number_of_trials :: how many times to flip a coin.
    • @param probability :: how likely heads will be flipped. 0.5 is a fair coin. 1.0 is a double headed coin.
    • @return :: count of how many heads came up.
  • random_negative_binomial(trial_successes: int, probability: float) -> int
    • Based on the idea of flipping a coin as long as it takes to succeed.
    • @param trial_successes :: the required number of heads flipped to succeed.
    • @param probability :: how likely heads will be flipped. 0.50 is a fair coin.
    • @return :: the count of how many tails came up before the required number of heads.
  • random_geometric(probability: float) -> int
    • Same as random_negative_binomial(1, probability).
  • random_poisson(mean: float) -> int
    • @param mean :: sets the average output of the function.
    • @return :: random integer, poisson distribution centered on the mean.
  • random_discrete(count: int, xmin: int, xmax: int) -> int
    • @param count :: number of weighted values
    • @param xmin :: smallest weight of the set
    • @param xmin :: largest weight of the set

Random Floating Point Functions

  • generate_canonical() -> float
    • Evenly distributes real values of maximum precision.
    • @return :: random Float in range {0.0, 1.0} biclusive. The spec defines the output range to be [0.0, 1.0).
      • biclusive: feature/bug rendering the exclusivity of this function a bit more mysterious than desired. This is a known compiler bug.
  • random_float(left_limit: float, right_limit: float) -> float
    • Suffers from the same biclusive feature/bug noted for generate_canonical().
    • @param left_limit :: input A
    • @param right_limit :: input B
    • @return :: random Float in range {A, B} biclusive. The spec defines the output range to be [A, B).
  • random_normal(mean: float, std_dev: float) -> float
    • @param mean :: sets the average output of the function.
    • @param std_dev :: standard deviation. Specifies spread of data from the mean.
  • random_log_normal(log_mean: float, log_deviation: float) -> float
    • @param log_mean :: sets the log of the mean of the function.
    • @param log_deviation :: log of the standard deviation. Specifies spread of data from the mean.
  • random_exponential(lambda_rate: float) -> float
    • Produces random non-negative floating-point values, distributed according to probability density function.
    • @param lambda_rate :: λ constant rate of a random event per unit of time/distance.
    • @return :: The time/distance until the next random event. For example, this distribution describes the time between the clicks of a Geiger counter or the distance between point mutations in a DNA strand.
  • random_gamma(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Produces random positive floating-point values, distributed according to probability density function.
    • @param shape :: α the number of independent exponentially distributed random variables.
    • @param scale :: β the scale factor or the mean of each of the distributed random variables.
    • @return :: the sum of α independent exponentially distributed random variables, each of which has a mean of β.
  • random_weibull(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Similar to the gamma distribution but uses a closed form distribution function.
    • Popular in reliability and survival analysis.
  • random_extreme_value(location: float, scale: float) -> float
    • Based on Extreme Value Theory.
    • Used for statistical models of the magnitude of earthquakes and volcanoes.
  • random_chi_squared(degrees_of_freedom: float) -> float
    • Used with the Chi Squared Test and Null Hypotheses to test if sample data fits an expected distribution.
  • random_cauchy(location: float, scale: float) -> float
    • @param location :: It specifies the location of the peak. The default value is 0.0.
    • @param scale :: It represents the half-width at half-maximum. The default value is 1.0.
    • @return :: Continuous Distribution.
  • random_fisher_f(degrees_of_freedom_1: float, degrees_of_freedom_2: float) -> float
    • F distributions often arise when comparing ratios of variances.
  • random_student_t(degrees_of_freedom: float) -> float
    • T distribution. Same as a normal distribution except it uses the sample standard deviation rather than the population standard deviation.
    • As degrees_of_freedom goes to infinity it converges with the normal distribution.
  • piecewise_constant_distribution coming soon
    • Produces real values distributed on constant subintervals.
  • piecewise_linear_distribution coming soon
    • Produces real values distributed on defined subintervals.

Engines

  • mersenne_twister_engine
    • Implements 64 bit Mersenne twister algorithm. Default engine on most systems.
  • linear_congruential_engine
    • Implements linear congruential algorithm.
  • subtract_with_carry_engine
    • Implements a subtract-with-carry (lagged Fibonacci) algorithm.
  • storm_engine
    • RNG: Custom Engine
    • Default Standard
  • vortex_engine
    • RNG: Custom Engine
    • Experimental

Engine Adaptors

Engine adaptors generate pseudo-random numbers using another random number engine as entropy source. They are generally used to alter the spectral characteristics of the underlying engine.

  • discard_block_engine
    • Discards some output of a random number engine.
  • independent_bits_engine
    • Packs the output of a random number engine into blocks of a specified number of bits.
  • shuffle_order_engine
    • Delivers the output of a random number engine in a different order.

Seeds & Entropy Source

  • random_device
    • Non-deterministic uniform random bit generator, although implementations are allowed to implement random_device using a pseudo-random number engine if there is no support for non-deterministic random number generation.
  • seed_seq
    • General-purpose bias-eliminating scrambled seed sequence generator.

Distribution & Performance Test Suite

  • distribution_timer(func: staticmethod, *args, **kwargs) -> None
    • For statistical analysis of non-deterministic numeric functions.
    • @param func :: Function method or lambda to analyze. func(*args, **kwargs)
    • @optional_kw num_cycles :: Total number of samples for distribution analysis.
    • @optional_kw post_processor :: Used to scale a large set of data into a smaller set of groupings.
  • quick_test(n=10000)
    • Runs a battery of tests for every random distribution function in the module.
    • @param n :: the total number of samples to collect for each test. Default: 10,000

Development Log

RNG 0.1.22
  • The RNG Storm Engine is now the default standard.
  • Experimental Vortex Engine added for testing.
RNG 0.1.21 beta
  • Small update to the testing suite.
RNG 0.1.20 beta
  • Changed default inputs for random_int and random_below to sane values.
    • random_int(left_limit=1, right_limit=20) down from -2**63, 2**63 - 1
    • random_below(upper_bound=10) down from 2**63 - 1
RNG 0.1.19 beta
  • Broke some fixed typos, for a change of pace.
RNG 0.1.18 beta
  • Fixed some typos.
RNG 0.1.17 beta
  • Major Refactoring.
  • New primary engine: Hurricane.
  • Experimental engine Typhoon added: random_below() only.
RNG 0.1.16 beta
  • Internal Engine Performance Tuning.
RNG 0.1.15 beta
  • Engine Testing.
RNG 0.1.14 beta
  • Fixed a few typos.
RNG 0.1.13 beta
  • Fixed a few typos.
RNG 0.1.12 beta
  • Major Test Suite Upgrade.
  • Major Bug Fixes.
    • Removed several 'foot-guns' in prep for fuzz testing in future releases.
RNG 0.1.11 beta
  • Fixed small bug in the install script.
RNG 0.1.10 beta
  • Fixed some typos.
RNG 0.1.9 beta
  • Fixed some typos.
RNG 0.1.8 beta
  • Fixed some typos.
  • More documentation added.
RNG 0.1.7 beta
  • The random_floating_point function renamed to random_float.
  • The function c_rand() has been removed as well as all the cruft it required.
  • Major Documentation Upgrade.
  • Fixed an issue where keyword arguments would fail to propagate. Both, positional args and kwargs now work as intended.
  • Added this Dev Log.
RNG 0.0.6 alpha
  • Minor ABI changes.
RNG 0.0.5 alpha
  • Tests redesigned slightly for Float functions.
RNG 0.0.4 alpha
  • Random Float Functions Implemented.
RNG 0.0.3 alpha
  • Random Integer Functions Implemented.
RNG 0.0.2 alpha
  • Random Bool Function Implemented.
RNG 0.0.1 pre-alpha
  • Planning & Design.

Distribution and Performance Test Suite

Quick Test: RNG Storm Engine
 Min Integer: -9223372036854775807
 Max Integer:  9223372036854775807
 Min Float: -1.7976931348623157e+308
 Max Float:  1.7976931348623157e+308
 Min Below Zero: -5e-324
 Min Above Zero:  5e-324


Binary Tests

Output Distribution: random_bool(truth_factor=0.3333333333333333)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 125ns
Raw Samples: False, False, False, False, False
Test Samples: 100000
Sample Statistics:
 Minimum: False
 Median: False
 Maximum: True
 Mean: 0.33362
 Std Deviation: 0.47150813227259186
Sample Distribution:
 False: 66.638%
 True: 33.362%


Integer Tests

Base Case for random_int:
Output Distribution: Random.randint(a=1, b=6)
Approximate Single Execution Time: Min: 1468ns, Mid: 1515ns, Max: 2656ns
Raw Samples: 5, 1, 2, 3, 6
Test Samples: 100000
Sample Statistics:
 Minimum: 1
 Median: 4
 Maximum: 6
 Mean: 3.50354
 Std Deviation: 1.7054901217437626
Sample Distribution:
 1: 16.462%
 2: 16.783%
 3: 16.753%
 4: 16.649%
 5: 16.647%
 6: 16.706%

Output Distribution: random_int(left_limit=1, right_limit=6)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 156ns
Raw Samples: 4, 1, 5, 6, 6
Test Samples: 100000
Sample Statistics:
 Minimum: 1
 Median: 3
 Maximum: 6
 Mean: 3.49603
 Std Deviation: 1.7072707421009323
Sample Distribution:
 1: 16.656%
 2: 16.785%
 3: 16.698%
 4: 16.668%
 5: 16.547%
 6: 16.646%

Typhoon Engine:
Output Distribution: random_below(upper_bound=6)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 718ns
Raw Samples: 1, 5, 4, 4, 3
Test Samples: 100000
Sample Statistics:
 Minimum: 0
 Median: 2
 Maximum: 5
 Mean: 2.49493
 Std Deviation: 1.7066233974530547
Sample Distribution:
 0: 16.673%
 1: 16.762%
 2: 16.755%
 3: 16.575%
 4: 16.679%
 5: 16.556%

Output Distribution: random_binomial(number_of_trials=4, probability=0.5)
Approximate Single Execution Time: Min: 187ns, Mid: 187ns, Max: 281ns
Raw Samples: 2, 2, 2, 2, 0
Test Samples: 100000
Sample Statistics:
 Minimum: 0
 Median: 2
 Maximum: 4
 Mean: 2.00239
 Std Deviation: 0.9999971439173606
Sample Distribution:
 0: 6.218%
 1: 24.977%
 2: 37.402%
 3: 25.154%
 4: 6.249%

Output Distribution: random_negative_binomial(number_of_trials=5, probability=0.75)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 218ns
Raw Samples: 3, 1, 1, 1, 0
Test Samples: 100000
Sample Statistics:
 Minimum: 0
 Median: 1
 Maximum: 13
 Mean: 1.66445
 Std Deviation: 1.4891334301142147
Sample Distribution:
 0: 23.807%
 1: 29.459%
 2: 22.44%
 3: 13.074%
 4: 6.427%
 5: 2.819%
 6: 1.194%
 7: 0.496%
 8: 0.175%
 9: 0.069%
 10: 0.023%
 11: 0.011%
 12: 0.005%
 13: 0.001%

Output Distribution: random_geometric(probability=0.75)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 125ns
Raw Samples: 1, 2, 0, 0, 0
Test Samples: 100000
Sample Statistics:
 Minimum: 0
 Median: 0
 Maximum: 7
 Mean: 0.33146
 Std Deviation: 0.6622678116793416
Sample Distribution:
 0: 75.052%
 1: 18.779%
 2: 4.623%
 3: 1.178%
 4: 0.275%
 5: 0.074%
 6: 0.016%
 7: 0.003%

Output Distribution: random_poisson(mean=4.5)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 406ns
Raw Samples: 1, 5, 5, 5, 2
Test Samples: 100000
Sample Statistics:
 Minimum: 0
 Median: 4
 Maximum: 17
 Mean: 4.51223
 Std Deviation: 2.127913463291464
Sample Distribution:
 0: 1.13%
 1: 4.836%
 2: 11.272%
 3: 16.901%
 4: 18.927%
 5: 17.068%
 6: 12.749%
 7: 8.28%
 8: 4.726%
 9: 2.364%
 10: 1.047%
 11: 0.453%
 12: 0.152%
 13: 0.065%
 14: 0.021%
 15: 0.007%
 16: 0.001%
 17: 0.001%

Output Distribution: random_discrete(count=7, xmin=1, xmax=30)
Approximate Single Execution Time: Min: 437ns, Mid: 468ns, Max: 843ns
Raw Samples: 6, 6, 1, 5, 5
Test Samples: 100000
Sample Statistics:
 Minimum: 0
 Median: 4
 Maximum: 6
 Mean: 4.00835
 Std Deviation: 1.7290662723567718
Sample Distribution:
 0: 3.575%
 1: 6.999%
 2: 10.634%
 3: 14.27%
 4: 18.004%
 5: 21.366%
 6: 25.152%


Floating Point Tests

Base Case for generate_canonical:
Output Distribution: Random.random()
Approximate Single Execution Time: Min: 31ns, Mid: 62ns, Max: 62ns
Raw Samples: 0.39007872692485746, 0.5136043182882409, 0.9678663745161347, 0.026910988879235376, 0.1312796290661109
Test Samples: 100000
Pre-processor Statistics:
 Minimum: 1.8808174038209557e-06
 Median: (0.5002111976687824, 0.5002285172323521)
 Maximum: 0.9999989857393841
 Mean: 0.5001942784596156
 Std Deviation: 0.2881642482557173
Post-processor Distribution using round method:
 0: 49.975%
 1: 50.025%

Output Distribution: generate_canonical()
Approximate Single Execution Time: Min: 31ns, Mid: 46ns, Max: 93ns
Raw Samples: 0.17266801449091254, 0.8751518224172189, 0.6528225144295121, 0.32656703320084685, 0.6337244729867665
Test Samples: 100000
Pre-processor Statistics:
 Minimum: 2.222804643788593e-05
 Median: (0.5014772879677062, 0.5014979103470382)
 Maximum: 0.9999978994418443
 Mean: 0.5003956301882327
 Std Deviation: 0.2888680161001291
Post-processor Distribution using round method:
 0: 49.84%
 1: 50.16%

Output Distribution: random_float(left_limit=0.0, right_limit=10.0)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 125ns
Raw Samples: 7.554073110075413, 1.081195304005237, 5.5159396705502575, 5.932362690893004, 1.8378485273337462
Test Samples: 100000
Pre-processor Statistics:
 Minimum: 6.282260080036587e-05
 Median: (4.980786824946021, 4.980840110254287)
 Maximum: 9.999997482025409
 Mean: 4.990642926210346
 Std Deviation: 2.887838022302778
Post-processor Distribution using ceil method:
 1: 10.044%
 2: 10.094%
 3: 9.987%
 4: 10.092%
 5: 9.963%
 6: 10.032%
 7: 9.961%
 8: 9.962%
 9: 9.834%
 10: 10.031%

Base Case for random_exponential:
Output Distribution: Random.expovariate(lambd=1.0)
Approximate Single Execution Time: Min: 375ns, Mid: 375ns, Max: 687ns
Raw Samples: 1.815792557605467, 0.5200104241609897, 2.877231820515212, 1.186761389576828, 0.05966546080054815
Test Samples: 100000
Pre-processor Statistics:
 Minimum: 2.1490954952161227e-05
 Median: (0.6947168324423334, 0.6947315234539884)
 Maximum: 11.030941556761762
 Mean: 1.0000368706714868
 Std Deviation: 0.9944952188520089
Post-processor Distribution using floor_mod_10 method:
 0: 63.105%
 1: 23.289%
 2: 8.676%
 3: 3.109%
 4: 1.208%
 5: 0.376%
 6: 0.16%
 7: 0.06%
 8: 0.015%
 9: 0.002%

Output Distribution: random_exponential(lambda_rate=1.0)
Approximate Single Execution Time: Min: 62ns, Mid: 62ns, Max: 125ns
Raw Samples: 1.790048896195803, 1.40356440221863, 1.1793673980062969, 0.08286207852376251, 0.5305371181967599
Test Samples: 100000
Pre-processor Statistics:
 Minimum: 9.93277985929956e-06
 Median: (0.6941162942511672, 0.6941505319946633)
 Maximum: 11.181965381606805
 Mean: 1.0033558899621509
 Std Deviation: 1.00449941980322
Post-processor Distribution using floor_mod_10 method:
 0: 63.039%
 1: 23.382%
 2: 8.435%
 3: 3.289%
 4: 1.167%
 5: 0.432%
 6: 0.163%
 7: 0.059%
 8: 0.024%
 9: 0.01%

Base Case for random_gamma:
Output Distribution: Random.gammavariate(alpha=1.0, beta=1.0)
Approximate Single Execution Time: Min: 531ns, Mid: 546ns, Max: 781ns
Raw Samples: 0.18768747716260403, 0.7563899725683069, 1.5884715423170468, 0.4173578784294136, 0.29853722863852933
Test Samples: 100000
Pre-processor Statistics:
 Minimum: 7.075161334828967e-06
 Median: (0.6944785848763729, 0.6944950264397306)
 Maximum: 11.353450590038182
 Mean: 1.0007536847339589
 Std Deviation: 1.0073610809428715
Post-processor Distribution using floor_mod_10 method:
 0: 63.111%
 1: 23.491%
 2: 8.416%
 3: 3.088%
 4: 1.178%
 5: 0.445%
 6: 0.162%
 7: 0.063%
 8: 0.035%
 9: 0.011%

Output Distribution: random_gamma(shape=1.0, scale=1.0)
Approximate Single Execution Time: Min: 62ns, Mid: 93ns, Max: 906ns
Raw Samples: 0.3658606853706792, 0.5480090518559334, 1.0141978727496368, 0.03113638555854938, 0.36433975775902605
Test Samples: 100000
Pre-processor Statistics:
 Minimum: 8.836215477482573e-07
 Median: (0.6977715550792121, 0.6977731868022449)
 Maximum: 13.570845910559859
 Mean: 0.999009958655276
 Std Deviation: 0.9985601903357315
Post-processor Distribution using floor_mod_10 method:
 0: 63.202%
 1: 23.358%
 2: 8.532%
 3: 3.103%
 4: 1.143%
 5: 0.421%
 6: 0.142%
 7: 0.061%
 8: 0.029%
 9: 0.009%

Output Distribution: random_weibull(shape=1.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 125ns, Max: 343ns
Raw Samples: 0.603418586033415, 0.15277469942710822, 2.4726835013946395, 0.024315555618426785, 0.7428719662310594
Test Samples: 100000
Pre-processor Statistics:
 Minimum: 3.741927014178459e-06
 Median: (0.6941692879651568, 0.6941881044443547)
 Maximum: 11.583440831662642
 Mean: 0.9992260630640509
 Std Deviation: 0.9970044678956368
Post-processor Distribution using floor_mod_10 method:
 0: 63.328%
 1: 23.166%
 2: 8.527%
 3: 3.161%
 4: 1.202%
 5: 0.38%
 6: 0.139%
 7: 0.069%
 8: 0.02%
 9: 0.008%

Output Distribution: random_extreme_value(location=0.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 187ns
Raw Samples: -0.4084014336109255, 1.2597903918183102, 1.0224154827191605, 0.8859546029474165, -0.14892090181647627
Test Samples: 100000
Pre-processor Statistics:
 Minimum: -2.5128779775926735
 Median: (0.36399316657313274, 0.36400898412809807)
 Maximum: 11.2878318041676
 Mean: 0.5673661658123041
 Std Deviation: 1.2728970077158825
Post-processor Distribution using round method:
 -3: 0.001%
 -2: 1.117%
 -1: 18.206%
 0: 35.359%
 1: 25.597%
 2: 12.032%
 3: 4.87%
 4: 1.737%
 5: 0.68%
 6: 0.266%
 7: 0.087%
 8: 0.033%
 9: 0.012%
 10: 0.002%
 11: 0.001%

Base Case for random_normal:
Output Distribution: Random.gauss(mu=5.0, sigma=2.0)
Approximate Single Execution Time: Min: 625ns, Mid: 656ns, Max: 1031ns
Raw Samples: 6.121627613496349, 1.72152706524172, 8.103857344506642, 4.366128106678294, 4.736988027536894
Test Samples: 100000
Pre-processor Statistics:
 Minimum: -4.441095086379555
 Median: (4.999427161376932, 4.999571606471292)
 Maximum: 12.950774942786214
 Mean: 4.995803271483755
 Std Deviation: 2.0102778240806733
Post-processor Distribution using round method:
 -4: 0.001%
 -3: 0.012%
 -2: 0.047%
 -1: 0.263%
 0: 0.928%
 1: 2.896%
 2: 6.569%
 3: 12.183%
 4: 17.33%
 5: 19.598%
 6: 17.281%
 7: 12.339%
 8: 6.579%
 9: 2.694%
 10: 0.972%
 11: 0.259%
 12: 0.044%
 13: 0.005%

Output Distribution: random_normal(mean=5.0, std_dev=2.0)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 187ns
Raw Samples: 5.358407681872787, 8.33562435876431, 4.821272954929282, 3.229393205241111, 5.076419655986444
Test Samples: 100000
Pre-processor Statistics:
 Minimum: -3.97918184033268
 Median: (5.001661190015325, 5.001703185005926)
 Maximum: 13.969093398397163
 Mean: 4.999236445388396
 Std Deviation: 2.0018989712094046
Post-processor Distribution using round method:
 -4: 0.003%
 -3: 0.01%
 -2: 0.055%
 -1: 0.252%
 0: 0.898%
 1: 2.825%
 2: 6.553%
 3: 11.983%
 4: 17.585%
 5: 19.675%
 6: 17.48%
 7: 12.22%
 8: 6.471%
 9: 2.769%
 10: 0.884%
 11: 0.271%
 12: 0.058%
 13: 0.007%
 14: 0.001%

Base Case for random_log_normal:
Output Distribution: Random.lognormvariate(mu=1.6, sigma=0.25)
Approximate Single Execution Time: Min: 875ns, Mid: 937ns, Max: 1625ns
Raw Samples: 8.26820719925435, 5.351547835821548, 6.946743968918652, 3.170150025442643, 5.4712513304622945
Test Samples: 100000
Pre-processor Statistics:
 Minimum: 1.6667045317003126
 Median: (4.954312487764934, 4.954323229697265)
 Maximum: 13.786396800735611
 Mean: 5.113677847455411
 Std Deviation: 1.296716152976468
Post-processor Distribution using round method:
 2: 0.272%
 3: 7.958%
 4: 26.617%
 5: 31.254%
 6: 20.013%
 7: 9.004%
 8: 3.363%
 9: 1.056%
 10: 0.337%
 11: 0.096%
 12: 0.023%
 13: 0.006%
 14: 0.001%

Output Distribution: random_log_normal(log_mean=1.6, log_deviation=0.25)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 218ns
Raw Samples: 7.037675245912747, 3.20437891798607, 2.3356857309610746, 3.477043957888205, 4.349098877389956
Test Samples: 100000
Pre-processor Statistics:
 Minimum: 1.7863352802990973
 Median: (4.951493647231509, 4.951519966027017)
 Maximum: 15.522130012111067
 Mean: 5.107156564351998
 Std Deviation: 1.2973543346565326
Post-processor Distribution using round method:
 2: 0.313%
 3: 7.997%
 4: 26.753%
 5: 31.268%
 6: 19.899%
 7: 8.962%
 8: 3.28%
 9: 1.081%
 10: 0.331%
 11: 0.08%
 12: 0.023%
 13: 0.009%
 14: 0.002%
 15: 0.001%
 16: 0.001%

Output Distribution: random_chi_squared(degrees_of_freedom=1.0)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 250ns
Raw Samples: 5.10476671750887, 0.01597563394875123, 0.3394081747790435, 1.4509569932018131, 0.14806659966190752
Test Samples: 100000
Pre-processor Statistics:
 Minimum: 5.677249036731523e-11
 Median: (0.45628004867210437, 0.4562957763643245)
 Maximum: 19.585295082217975
 Mean: 0.9989617965497131
 Std Deviation: 1.414872610479426
Post-processor Distribution using floor_mod_10 method:
 0: 68.176%
 1: 16.321%
 2: 7.441%
 3: 3.693%
 4: 1.943%
 5: 1.094%
 6: 0.656%
 7: 0.352%
 8: 0.211%
 9: 0.113%

Output Distribution: random_cauchy(location=0.0, scale=1.0)
Approximate Single Execution Time: Min: 93ns, Mid: 93ns, Max: 187ns
Raw Samples: 0.9792428479186233, 2.451851317484657, 1.510727505691333, -0.5608240269048651, 0.7603613319351522
Test Samples: 100000
Pre-processor Statistics:
 Minimum: -172425.68767810756
 Median: (0.004689781970661467, 0.004708349196668644)
 Maximum: 52414.12728756561
 Mean: -1.2711692261191314
 Std Deviation: 580.717273034071
Post-processor Distribution using floor_mod_10 method:
 0: 26.055%
 1: 11.495%
 2: 5.715%
 3: 3.755%
 4: 3.104%
 5: 3.101%
 6: 3.789%
 7: 5.714%
 8: 11.17%
 9: 26.102%

Output Distribution: random_fisher_f(degrees_of_freedom_1=8.0, degrees_of_freedom_2=8.0)
Approximate Single Execution Time: Min: 187ns, Mid: 218ns, Max: 281ns
Raw Samples: 0.744808302688291, 0.8542478744686068, 0.769329965948885, 0.7372716558803082, 0.6576997884632593
Test Samples: 100000
Pre-processor Statistics:
 Minimum: 0.02610393281727867
 Median: (0.9996940002477811, 0.9997024705926622)
 Maximum: 55.82366364439022
 Mean: 1.3317628538471438
 Std Deviation: 1.2360145629466839
Post-processor Distribution using floor_mod_10 method:
 0: 50.069%
 1: 32.572%
 2: 10.496%
 3: 3.756%
 4: 1.532%
 5: 0.758%
 6: 0.391%
 7: 0.206%
 8: 0.143%
 9: 0.077%

Output Distribution: random_student_t(degrees_of_freedom=8.0)
Approximate Single Execution Time: Min: 125ns, Mid: 156ns, Max: 250ns
Raw Samples: 0.20179148930872645, -0.14352886612184004, 1.0645149659577475, 0.12141274858627012, 0.9887009387526173
Test Samples: 100000
Pre-processor Statistics:
 Minimum: -9.821117139358194
 Median: (0.0010661285859075353, 0.0011342355490390273)
 Maximum: 9.388412709324854
 Mean: 0.002530404164775108
 Std Deviation: 1.1581484286712982
Post-processor Distribution using round method:
 -10: 0.001%
 -8: 0.006%
 -7: 0.005%
 -6: 0.016%
 -5: 0.068%
 -4: 0.322%
 -3: 1.479%
 -2: 6.668%
 -1: 22.869%
 0: 36.922%
 1: 22.964%
 2: 6.849%
 3: 1.401%
 4: 0.314%
 5: 0.087%
 6: 0.023%
 7: 0.001%
 8: 0.004%
 9: 0.001%


=========================================================================
Total Test Time: 10.3288 seconds


Experimental, RNG Vortex Engine:
Output Distribution: vortex_random_below(10)
Approximate Single Execution Time: Min: 125ns, Mid: 125ns, Max: 750ns
Raw Samples: 8, 9, 0, 9, 8
Test Samples: 100000
Sample Statistics:
 Minimum: 0
 Median: 4
 Maximum: 9
 Mean: 4.49974
 Std Deviation: 2.8723618220942098
Sample Distribution:
 0: 9.95%
 1: 10.068%
 2: 9.997%
 3: 10.078%
 4: 9.945%
 5: 9.871%
 6: 10.054%
 7: 10.074%
 8: 9.966%
 9: 9.997%

Base Case 1, RNG Storm Engine:
Output Distribution: random_below(10)
Approximate Single Execution Time: Min: 31ns, Mid: 62ns, Max: 187ns
Raw Samples: 6, 8, 5, 1, 1
Test Samples: 100000
Sample Statistics:
 Minimum: 0
 Median: 5
 Maximum: 9
 Mean: 4.5091
 Std Deviation: 2.8661366571385556
Sample Distribution:
 0: 9.849%
 1: 9.988%
 2: 10.013%
 3: 9.964%
 4: 9.877%
 5: 10.247%
 6: 10.117%
 7: 10.033%
 8: 9.88%
 9: 10.032%

Base Case 2, Random.py Engine:
Output Distribution: Random.randrange(10)
Approximate Single Execution Time: Min: 843ns, Mid: 890ns, Max: 1375ns
Raw Samples: 8, 4, 4, 1, 6
Test Samples: 100000
Sample Statistics:
 Minimum: 0
 Median: 4
 Maximum: 9
 Mean: 4.5006
 Std Deviation: 2.867950817468618
Sample Distribution:
 0: 9.891%
 1: 9.904%
 2: 10.199%
 3: 9.976%
 4: 10.167%
 5: 9.919%
 6: 10.099%
 7: 9.825%
 8: 9.982%
 9: 10.038%


All tests passed!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RNG-0.1.22.tar.gz (114.5 kB view details)

Uploaded Source

Built Distribution

RNG-0.1.22-cp37-cp37m-macosx_10_9_x86_64.whl (128.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file RNG-0.1.22.tar.gz.

File metadata

  • Download URL: RNG-0.1.22.tar.gz
  • Upload date:
  • Size: 114.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2

File hashes

Hashes for RNG-0.1.22.tar.gz
Algorithm Hash digest
SHA256 85cccc0e9b49d979a7cb89211bce201bae0038bf86df6359c88691b44a8fa517
MD5 92bfd04cf82daff9d04678296e5320c1
BLAKE2b-256 77d599ae4c139cf7e2c4337e58f4d689426ced0bb897ec9f5c7e6f9e11117580

See more details on using hashes here.

File details

Details for the file RNG-0.1.22-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: RNG-0.1.22-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 128.6 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.2

File hashes

Hashes for RNG-0.1.22-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8b3abca0f4fa123e29b58bbde14eb812babd01dab5a1dfa4355f36e3426c071c
MD5 048615ad67506c22c34f90e4df86816d
BLAKE2b-256 1aed2ec62e8c3aec013a19835375d1aa23d66492f4c17966c58ff5760823c570

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page