Skip to main content

Python API for the C++ Random library

Project description

Random Number Generator: RNG Storm Engine

Python API for the C++ Random library.

RNG is not suitable for cryptography, but it could be perfect for other random stuff like data science, experimental programming, A.I. and games.

Recommended Installation: $ pip install RNG

Number Types, Precision & Size:

  • Float: Python float -> double at the C++ layer.

    • Min Float: -1.7976931348623157e+308
    • Max Float: 1.7976931348623157e+308
    • Min Below Zero: -5e-324
    • Min Above Zero: 5e-324
  • Integer: Python int -> long long at the C++ layer.

    • Input & Output Range: (-2**63, 2**63) or approximately +/- 9.2 billion billion.
    • Min Integer: -9223372036854775807
    • Max Integer: 9223372036854775807

Random Binary Function

  • bernoulli(ratio_of_truth: float) -> bool
    • Bernoulli distribution.
    • @param ratio_of_truth :: the probability of True as a decimal. Expected input range: [0.0, 1.0], clamped.
    • @return :: True or False

Random Integer Functions

  • random_int(left_limit: int, right_limit: int) -> int
    • Flat uniform distribution.
    • 20x faster than random.randint()
    • @param left_limit :: input A.
    • @param right_limit :: input B.
    • @return :: random integer in the inclusive range [A, B] or [B, A] if B < A
  • random_below(upper_bound: int) -> int
    • Flat uniform distribution.
    • @param upper_bound :: inout A
    • @return :: random integer in exclusive range [0, A) or (A, 0] if A < 0
  • binomial(number_of_trials: int, probability: float) -> int
    • Based on the idea of flipping a coin and counting how many heads come up after some number of flips.
    • @param number_of_trials :: how many times to flip a coin.
    • @param probability :: how likely heads will be flipped. 0.5 is a fair coin. 1.0 is a double headed coin.
    • @return :: count of how many heads came up.
  • negative_binomial(trial_successes: int, probability: float) -> int
    • Based on the idea of flipping a coin as long as it takes to succeed.
    • @param trial_successes :: the required number of heads flipped to succeed.
    • @param probability :: how likely heads will be flipped. 0.50 is a fair coin.
    • @return :: the count of how many tails came up before the required number of heads.
  • geometric(probability: float) -> int
    • Same as random_negative_binomial(1, probability).
  • poisson(mean: float) -> int
    • @param mean :: sets the average output of the function.
    • @return :: random integer, poisson distribution centered on the mean.

Random Floating Point Functions

  • generate_canonical() -> float
    • Evenly distributes real values of maximum precision.
    • @return :: random Float in range {0.0, 1.0} biclusive. The spec defines the output range to be [0.0, 1.0).
      • biclusive: feature/bug rendering the exclusivity of this function a bit more mysterious than desired. This is a known compiler bug.
  • random_float(left_limit: float, right_limit: float) -> float
    • Suffers from the same biclusive feature/bug noted for generate_canonical().
    • @param left_limit :: input A
    • @param right_limit :: input B
    • @return :: random Float in range {A, B} biclusive. The spec defines the output range to be [A, B).
  • normalvariate(mean: float, std_dev: float) -> float
    • @param mean :: sets the average output of the function.
    • @param std_dev :: standard deviation. Specifies spread of data from the mean.
  • lognormvariate(log_mean: float, log_deviation: float) -> float
    • @param log_mean :: sets the log of the mean of the function.
    • @param log_deviation :: log of the standard deviation. Specifies spread of data from the mean.
  • exponential(lambda_rate: float) -> float
    • Produces random non-negative floating-point values, distributed according to probability density function.
    • @param lambda_rate :: λ constant rate of a random event per unit of time/distance.
    • @return :: The time/distance until the next random event. For example, this distribution describes the time between the clicks of a Geiger counter or the distance between point mutations in a DNA strand.
  • gammavariate(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Produces random positive floating-point values, distributed according to probability density function.
    • @param shape :: α the number of independent exponentially distributed random variables.
    • @param scale :: β the scale factor or the mean of each of the distributed random variables.
    • @return :: the sum of α independent exponentially distributed random variables, each of which has a mean of β.
  • weibullvariate(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Similar to the gamma distribution but uses a closed form distribution function.
    • Popular in reliability and survival analysis.
  • extreme_value(location: float, scale: float) -> float
    • Based on Extreme Value Theory.
    • Used for statistical models of the magnitude of earthquakes and volcanoes.
  • chi_squared(degrees_of_freedom: float) -> float
    • Used with the Chi Squared Test and Null Hypotheses to test if sample data fits an expected distribution.
  • cauchy(location: float, scale: float) -> float
    • @param location :: It specifies the location of the peak. The default value is 0.0.
    • @param scale :: It represents the half-width at half-maximum. The default value is 1.0.
    • @return :: Continuous Distribution.
  • fisher_f(degrees_of_freedom_1: float, degrees_of_freedom_2: float) -> float
    • F distributions often arise when comparing ratios of variances.
  • student_t(degrees_of_freedom: float) -> float
    • T distribution. Same as a normal distribution except it uses the sample standard deviation rather than the population standard deviation.
    • As degrees_of_freedom goes to infinity it converges with the normal distribution.

Engines

  • mersenne_twister_engine: internal only
    • Implements 64 bit Mersenne twister algorithm. Default engine on most systems.
  • linear_congruential_engine: internal only
    • Implements linear congruential algorithm.
  • subtract_with_carry_engine: internal only
    • Implements a subtract-with-carry (lagged Fibonacci) algorithm.
  • storm_engine: internal only
    • RNG: Custom Engine
    • Default Standard

Engine Adaptors

Engine adaptors generate pseudo-random numbers using another random number engine as entropy source. They are generally used to alter the spectral characteristics of the underlying engine.

  • discard_block_engine: internal only
    • Discards some output of a random number engine.
  • independent_bits_engine: internal only
    • Packs the output of a random number engine into blocks of a specified number of bits.
  • shuffle_order_engine: internal only
    • Delivers the output of a random number engine in a different order.

Seeds & Entropy Source

  • random_device: internal only
    • Non-deterministic uniform random bit generator, although implementations are allowed to implement random_device using a pseudo-random number engine if there is no support for non-deterministic random number generation.
  • seed_seq: internal only
    • General-purpose bias-eliminating scrambled seed sequence generator.

Distribution & Performance Test Suite

  • distribution_timer(func: staticmethod, *args, **kwargs) -> None
    • For statistical analysis of non-deterministic numeric functions.
    • @param func :: Function method or lambda to analyze. func(*args, **kwargs)
    • @optional_kw num_cycles :: Total number of samples for distribution analysis.
    • @optional_kw post_processor :: Used to scale a large set of data into a smaller set of groupings.
  • quick_test(n=10000) -> None
    • Runs a battery of tests for every random distribution function in the module.
    • @param n :: the total number of samples to collect for each test. Default: 10,000

Development Log

RNG 1.3.0
  • Storm Update
RNG 1.2.5
  • Low level clean up
RNG 1.2.4
  • Minor Typos Fixed
RNG 1.2.3
  • Documentation Update
  • Test Update
  • Bug Fixes
RNG 1.0.0 - 1.2.2, internal
  • API Changes:
    • randint changed to random_int
    • randbelow changed to random_below
    • random changed to generate_canonical
    • uniform changed to random_float
RNG 0.2.3
  • Bug Fixes
RNG 0.2.2
  • discrete() removed.
RNG 0.2.1
  • minor typos
  • discrete() depreciated.
RNG 0.2.0
  • Major Rebuild.
RNG 0.1.22
  • The RNG Storm Engine is now the default standard.
  • Experimental Vortex Engine added for testing.
RNG 0.1.21 beta
  • Small update to the testing suite.
RNG 0.1.20 beta
  • Changed default inputs for random_int and random_below to sane values.
    • random_int(left_limit=1, right_limit=20) down from -2**63, 2**63 - 1
    • random_below(upper_bound=10) down from 2**63 - 1
RNG 0.1.19 beta
  • Broke some fixed typos, for a change of pace.
RNG 0.1.18 beta
  • Fixed some typos.
RNG 0.1.17 beta
  • Major Refactoring.
  • New primary engine: Hurricane.
  • Experimental engine Typhoon added: random_below() only.
RNG 0.1.16 beta
  • Internal Engine Performance Tuning.
RNG 0.1.15 beta
  • Engine Testing.
RNG 0.1.14 beta
  • Fixed a few typos.
RNG 0.1.13 beta
  • Fixed a few typos.
RNG 0.1.12 beta
  • Major Test Suite Upgrade.
  • Major Bug Fixes.
    • Removed several 'foot-guns' in prep for fuzz testing in future releases.
RNG 0.1.11 beta
  • Fixed small bug in the install script.
RNG 0.1.10 beta
  • Fixed some typos.
RNG 0.1.9 beta
  • Fixed some typos.
RNG 0.1.8 beta
  • Fixed some typos.
  • More documentation added.
RNG 0.1.7 beta
  • The random_floating_point function renamed to random_float.
  • The function c_rand() has been removed as well as all the cruft it required.
  • Major Documentation Upgrade.
  • Fixed an issue where keyword arguments would fail to propagate. Both, positional args and kwargs now work as intended.
  • Added this Dev Log.
RNG 0.0.6 alpha
  • Minor ABI changes.
RNG 0.0.5 alpha
  • Tests redesigned slightly for Float functions.
RNG 0.0.4 alpha
  • Random Float Functions Implemented.
RNG 0.0.3 alpha
  • Random Integer Functions Implemented.
RNG 0.0.2 alpha
  • Random Bool Function Implemented.
RNG 0.0.1 pre-alpha
  • Planning & Design.

Distribution and Performance Test Suite

Quick Test: RNG Storm Engine

Round Trip Numeric Limits:
 Min Integer: -9223372036854775808
 Max Integer:  9223372036854775807
 Min Float: -1.7976931348623157e+308
 Max Float:  1.7976931348623157e+308
 Min Below Zero: -5e-324
 Min Above Zero:  5e-324


Binary Tests

Output Analysis: bernoulli(0.3333333333333333)
Typical Timing: 63 ± 1 ns
Raw Samples: False, True, False, True, True
Statistics of 1000 Samples:
 Minimum: False
 Median: False
 Maximum: True
 Mean: 0.349
 Std Deviation: 0.4768924684102554
Distribution of 10000 Samples:
 False: 65.89%
 True: 34.11%


Integer Tests

Output Analysis: Random.randint(1, 6)
Typical Timing: 1157 ± 9 ns
Raw Samples: 4, 2, 4, 6, 5
Statistics of 1000 Samples:
 Minimum: 1
 Median: 3
 Maximum: 6
 Mean: 3.412
 Std Deviation: 1.6973912740252723
Distribution of 10000 Samples:
 1: 16.55%
 2: 16.65%
 3: 16.85%
 4: 16.33%
 5: 16.41%
 6: 17.21%

Output Analysis: random_int(1, 6)
Typical Timing: 63 ± 3 ns
Raw Samples: 3, 5, 6, 2, 4
Statistics of 1000 Samples:
 Minimum: 1
 Median: 3
 Maximum: 6
 Mean: 3.512
 Std Deviation: 1.6776980272595752
Distribution of 10000 Samples:
 1: 16.43%
 2: 16.55%
 3: 17.03%
 4: 16.59%
 5: 17.05%
 6: 16.35%

Output Analysis: Random.randrange(6)
Typical Timing: 813 ± 9 ns
Raw Samples: 2, 5, 5, 2, 2
Statistics of 1000 Samples:
 Minimum: 0
 Median: 2
 Maximum: 5
 Mean: 2.445
 Std Deviation: 1.6928794525425728
Distribution of 10000 Samples:
 0: 16.32%
 1: 16.48%
 2: 17.23%
 3: 17.25%
 4: 16.74%
 5: 15.98%

Output Analysis: random_below(6)
Typical Timing: 63 ± 1 ns
Raw Samples: 1, 1, 1, 5, 5
Statistics of 1000 Samples:
 Minimum: 0
 Median: 2
 Maximum: 5
 Mean: 2.441
 Std Deviation: 1.6611075456689366
Distribution of 10000 Samples:
 0: 16.61%
 1: 17.43%
 2: 16.96%
 3: 16.41%
 4: 16.16%
 5: 16.43%

Output Analysis: binomial(4, 0.5)
Typical Timing: 157 ± 1 ns
Raw Samples: 2, 3, 0, 2, 2
Statistics of 1000 Samples:
 Minimum: 0
 Median: 2
 Maximum: 4
 Mean: 1.987
 Std Deviation: 0.9898539340785644
Distribution of 10000 Samples:
 0: 6.36%
 1: 24.06%
 2: 37.95%
 3: 25.32%
 4: 6.31%

Output Analysis: negative_binomial(5, 0.75)
Typical Timing: 94 ± 3 ns
Raw Samples: 1, 0, 7, 1, 0
Statistics of 1000 Samples:
 Minimum: 0
 Median: 1
 Maximum: 11
 Mean: 1.681
 Std Deviation: 1.5157626913658142
Distribution of 10000 Samples:
 0: 23.74%
 1: 29.72%
 2: 22.46%
 3: 12.6%
 4: 6.7%
 5: 2.87%
 6: 1.25%
 7: 0.41%
 8: 0.12%
 9: 0.1%
 10: 0.01%
 11: 0.02%

Output Analysis: geometric(0.75)
Typical Timing: 63 ± 3 ns
Raw Samples: 0, 0, 2, 0, 0
Statistics of 1000 Samples:
 Minimum: 0
 Median: 0
 Maximum: 5
 Mean: 0.3
 Std Deviation: 0.6296001877353568
Distribution of 10000 Samples:
 0: 74.88%
 1: 18.76%
 2: 4.84%
 3: 1.11%
 4: 0.3%
 5: 0.1%
 6: 0.01%

Output Analysis: poisson(4.5)
Typical Timing: 94 ± 6 ns
Raw Samples: 3, 4, 5, 6, 2
Statistics of 1000 Samples:
 Minimum: 0
 Median: 4
 Maximum: 13
 Mean: 4.409
 Std Deviation: 2.141098620639251
Distribution of 10000 Samples:
 0: 1.09%
 1: 5.42%
 2: 11.25%
 3: 17.09%
 4: 18.69%
 5: 16.95%
 6: 12.62%
 7: 8.26%
 8: 4.51%
 9: 2.23%
 10: 1.22%
 11: 0.39%
 12: 0.17%
 13: 0.08%
 14: 0.02%
 16: 0.01%


Floating Point Tests

Output Analysis: Random.random()
Typical Timing: 32 ± 8 ns
Raw Samples: 0.6257220293192036, 0.1587843748525427, 0.5212498572433126, 0.7270672153308279, 0.8023202133212103
Statistics of 1000 Samples:
 Minimum: 4.0308304055991506e-05
 Median: (0.48855325419506757, 0.4911622083907684)
 Maximum: 0.9998519558812695
 Mean: 0.49175615021930663
 Std Deviation: 0.2889823765777354
Post-processor Distribution of 10000 Samples using round method:
 0: 49.54%
 1: 50.46%

Output Analysis: generate_canonical()
Typical Timing: 32 ± 8 ns
Raw Samples: 0.3919923329945272, 0.41818073403369316, 0.5300207819847063, 0.9375683114938821, 0.6855193554375915
Statistics of 1000 Samples:
 Minimum: 0.0006355869343482954
 Median: (0.5244474238636627, 0.5249991681457991)
 Maximum: 0.9973953180046232
 Mean: 0.5056732891617263
 Std Deviation: 0.28277163627596547
Post-processor Distribution of 10000 Samples using round method:
 0: 49.6%
 1: 50.4%

Output Analysis: random_float(0.0, 10.0)
Typical Timing: 32 ± 8 ns
Raw Samples: 1.0755298683940526, 5.892589290786171, 7.84103595022363, 8.919264937183272, 7.67034273465522
Statistics of 1000 Samples:
 Minimum: 0.0002999602651352327
 Median: (4.766424604483823, 4.767395816181031)
 Maximum: 9.992616736007315
 Mean: 4.93615923259551
 Std Deviation: 2.8523430944773938
Post-processor Distribution of 10000 Samples using floor method:
 0: 10.05%
 1: 10.54%
 2: 10.02%
 3: 10.69%
 4: 9.91%
 5: 9.73%
 6: 9.56%
 7: 9.16%
 8: 10.14%
 9: 10.2%

Output Analysis: Random.expovariate(1.0)
Typical Timing: 313 ± 8 ns
Raw Samples: 0.3403298785851924, 1.8695503980575472, 2.006131027716257, 0.17666073050768805, 0.6610628610218727
Statistics of 1000 Samples:
 Minimum: 0.0004599901011892646
 Median: (0.6938722809901098, 0.6955970987042109)
 Maximum: 7.48007341547659
 Mean: 1.0160539470048628
 Std Deviation: 1.0239717139175992
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 62.7%
 1: 23.65%
 2: 8.63%
 3: 2.9%
 4: 1.28%
 5: 0.56%
 6: 0.19%
 7: 0.06%
 8: 0.03%

Output Analysis: expovariate(1.0)
Typical Timing: 63 ± 1 ns
Raw Samples: 1.2158771218405877, 0.0006580149355547406, 3.3336627210354774, 0.16089317775744988, 0.9935061882820501
Statistics of 1000 Samples:
 Minimum: 0.0007610519578644641
 Median: (0.7041370625362988, 0.7055005266273829)
 Maximum: 7.331075483902089
 Mean: 0.9881086892747002
 Std Deviation: 0.9907673453845725
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 63.48%
 1: 23.21%
 2: 8.42%
 3: 3.01%
 4: 1.2%
 5: 0.44%
 6: 0.13%
 7: 0.07%
 8: 0.03%
 9: 0.01%

Output Analysis: Random.gammavariate(1.0, 1.0)
Typical Timing: 438 ± 4 ns
Raw Samples: 2.729062579347058, 0.8460431651735795, 0.5707596242192408, 0.09640018620563888, 3.3018018301521623
Statistics of 1000 Samples:
 Minimum: 5.528092390574849e-05
 Median: (0.6545835667826807, 0.6561126093591253)
 Maximum: 6.9687712625240055
 Mean: 0.9582681044027269
 Std Deviation: 0.9401762415257677
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 63.82%
 1: 22.54%
 2: 8.63%
 3: 3.34%
 4: 1.14%
 5: 0.36%
 6: 0.14%
 7: 0.01%
 8: 0.01%
 9: 0.01%

Output Analysis: gammavariate(1.0, 1.0)
Typical Timing: 63 ± 1 ns
Raw Samples: 2.706640164361005, 2.042397986007575, 0.250425671758887, 0.36636679900861036, 0.1464455029811769
Statistics of 1000 Samples:
 Minimum: 0.00011138974192093048
 Median: (0.7126399185829264, 0.7134140749165374)
 Maximum: 8.530397171800969
 Mean: 1.0007052803809535
 Std Deviation: 1.0316274116075677
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 63.44%
 1: 23.87%
 2: 7.99%
 3: 2.59%
 4: 1.33%
 5: 0.47%
 6: 0.12%
 7: 0.14%
 8: 0.05%

Output Analysis: Random.weibullvariate(1.0, 1.0)
Typical Timing: 407 ± 7 ns
Raw Samples: 0.07374858644737285, 1.3664831619431808, 0.7817519728248706, 1.4115697489361918, 0.5754479592305365
Statistics of 1000 Samples:
 Minimum: 0.0010137473074764325
 Median: (0.7095411577014754, 0.7123991158784878)
 Maximum: 8.43961718649647
 Mean: 1.0209661092377262
 Std Deviation: 1.0117055184612633
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 63.08%
 1: 23.69%
 2: 8.84%
 3: 2.71%
 4: 0.93%
 5: 0.48%
 6: 0.2%
 7: 0.03%
 8: 0.03%
 9: 0.01%

Output Analysis: weibullvariate(1.0, 1.0)
Typical Timing: 94 ± 7 ns
Raw Samples: 0.18397966560432863, 0.49710268748768144, 0.47829812464106797, 0.509331979488556, 3.589230749015156
Statistics of 1000 Samples:
 Minimum: 7.100867112417946e-05
 Median: (0.708364180038233, 0.7084554318294236)
 Maximum: 6.6947532502860465
 Mean: 1.0272201611242082
 Std Deviation: 1.0314859624044872
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 62.73%
 1: 23.43%
 2: 8.63%
 3: 3.2%
 4: 1.33%
 5: 0.4%
 6: 0.19%
 7: 0.08%
 9: 0.01%

Output Analysis: extreme_value(0.0, 1.0)
Typical Timing: 63 ± 8 ns
Raw Samples: -0.9780687130134689, 0.6627285831777763, 2.0079601426399467, 1.2427874837007744, -0.07851360634470904
Statistics of 1000 Samples:
 Minimum: -1.911303646052639
 Median: (0.3606568023487982, 0.36099195696436437)
 Maximum: 6.928327400208182
 Mean: 0.526610794341577
 Std Deviation: 1.1863383595339747
Post-processor Distribution of 10000 Samples using round method:
 -2: 1.15%
 -1: 18.26%
 0: 35.62%
 1: 25.48%
 2: 12.16%
 3: 4.73%
 4: 1.69%
 5: 0.64%
 6: 0.17%
 7: 0.07%
 8: 0.03%

Output Analysis: Random.gauss(5.0, 2.0)
Typical Timing: 594 ± 7 ns
Raw Samples: 4.628415583323791, 3.7432306486473044, 6.704729879486447, 4.688210045540809, 4.884067254851023
Statistics of 1000 Samples:
 Minimum: -1.8203839333270322
 Median: (5.016455632534685, 5.01871172130724)
 Maximum: 10.975720350483314
 Mean: 4.941882163203685
 Std Deviation: 1.9850250537994012
Post-processor Distribution of 10000 Samples using round method:
 -2: 0.06%
 -1: 0.29%
 0: 1.08%
 1: 3.09%
 2: 6.56%
 3: 12.73%
 4: 17.08%
 5: 18.98%
 6: 17.85%
 7: 11.86%
 8: 6.2%
 9: 2.97%
 10: 0.93%
 11: 0.26%
 12: 0.03%
 13: 0.02%
 14: 0.01%

Output Analysis: normalvariate(5.0, 2.0)
Typical Timing: 63 ± 3 ns
Raw Samples: 1.957603085512312, 5.5037188127943475, 4.308670511930885, 2.21386372724635, 6.176884548924962
Statistics of 1000 Samples:
 Minimum: -1.6166014290635278
 Median: (4.922056274725187, 4.926864815908566)
 Maximum: 11.000278139661937
 Mean: 4.946104803126899
 Std Deviation: 1.996222855683651
Post-processor Distribution of 10000 Samples using round method:
 -3: 0.01%
 -2: 0.06%
 -1: 0.21%
 0: 0.88%
 1: 2.41%
 2: 6.89%
 3: 12.01%
 4: 17.62%
 5: 19.61%
 6: 17.04%
 7: 12.5%
 8: 6.63%
 9: 2.98%
 10: 0.87%
 11: 0.24%
 12: 0.03%
 13: 0.01%

Output Analysis: Random.lognormvariate(1.6, 0.25)
Typical Timing: 813 ± 24 ns
Raw Samples: 7.518994321452813, 6.42276639612712, 7.237554653586027, 4.695984464925408, 4.938002246900153
Statistics of 1000 Samples:
 Minimum: 2.267642461387746
 Median: (4.828196870621551, 4.829928299046591)
 Maximum: 11.39003466260026
 Mean: 5.033850830621758
 Std Deviation: 1.3211016674997373
Post-processor Distribution of 10000 Samples using round method:
 2: 0.32%
 3: 8.07%
 4: 27.82%
 5: 30.11%
 6: 20.13%
 7: 8.67%
 8: 3.15%
 9: 1.31%
 10: 0.27%
 11: 0.11%
 12: 0.02%
 13: 0.02%

Output Analysis: lognormvariate(1.6, 0.25)
Typical Timing: 94 ± 7 ns
Raw Samples: 3.35955734270404, 3.6741748931906253, 6.08980572690649, 3.9583664144041166, 4.418629405871006
Statistics of 1000 Samples:
 Minimum: 2.0701375764643024
 Median: (4.928732354718039, 4.9298039510715475)
 Maximum: 11.077701461861214
 Mean: 5.10901866905853
 Std Deviation: 1.3612090753529316
Post-processor Distribution of 10000 Samples using round method:
 2: 0.26%
 3: 7.95%
 4: 26.68%
 5: 31.28%
 6: 19.93%
 7: 8.65%
 8: 3.58%
 9: 1.1%
 10: 0.4%
 11: 0.12%
 12: 0.03%
 13: 0.02%

Output Analysis: chi_squared(1.0)
Typical Timing: 125 ± 5 ns
Raw Samples: 0.7351338156642365, 0.10197043213874361, 0.0004479891839900254, 2.773185433186169, 0.47738197707610047
Statistics of 1000 Samples:
 Minimum: 5.55023621582499e-06
 Median: (0.3981406583528158, 0.3990955485821841)
 Maximum: 10.477883297941728
 Mean: 0.9496774391499728
 Std Deviation: 1.382725300404331
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 69.06%
 1: 15.73%
 2: 7.51%
 3: 3.62%
 4: 1.8%
 5: 1.02%
 6: 0.6%
 7: 0.39%
 8: 0.17%
 9: 0.1%

Output Analysis: cauchy(0.0, 1.0)
Typical Timing: 63 ± 7 ns
Raw Samples: 0.12047614285340622, -0.9382817547743436, 0.3364748723191148, 0.20318849864529762, -0.02046005641688962
Statistics of 1000 Samples:
 Minimum: -82.48897001919615
 Median: (0.056003268199336674, 0.060337734319287115)
 Maximum: 10415.411578016254
 Mean: 11.141540433195399
 Std Deviation: 329.92131299483765
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 26.58%
 1: 11.58%
 2: 5.94%
 3: 3.58%
 4: 3.22%
 5: 3.06%
 6: 3.58%
 7: 5.59%
 8: 10.85%
 9: 26.02%

Output Analysis: fisher_f(8.0, 8.0)
Typical Timing: 188 ± 7 ns
Raw Samples: 1.303940866020909, 1.773026236828557, 0.9229338358989495, 0.4377167383233721, 0.6064276514082172
Statistics of 1000 Samples:
 Minimum: 0.08680712657350184
 Median: (1.0202664046567236, 1.0222205156710489)
 Maximum: 11.317407630701402
 Mean: 1.3511294154299045
 Std Deviation: 1.1354558855010388
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 50.01%
 1: 33.26%
 2: 9.48%
 3: 3.98%
 4: 1.66%
 5: 0.74%
 6: 0.43%
 7: 0.26%
 8: 0.11%
 9: 0.07%

Output Analysis: student_t(8.0)
Typical Timing: 157 ± 7 ns
Raw Samples: -0.5820353912666035, 1.2372497128657416, -1.5848056582854368, -1.52921491899218, -0.672592744581616
Statistics of 1000 Samples:
 Minimum: -4.1554943175974906
 Median: (-0.0003756534266611156, 0.0010336151855832448)
 Maximum: 5.0968059761295645
 Mean: -0.020289732107086456
 Std Deviation: 1.196691848347625
Post-processor Distribution of 10000 Samples using round method:
 -9: 0.01%
 -6: 0.02%
 -5: 0.1%
 -4: 0.33%
 -3: 1.52%
 -2: 6.5%
 -1: 22.88%
 0: 37.59%
 1: 22.74%
 2: 6.39%
 3: 1.57%
 4: 0.27%
 5: 0.07%
 6: 0.01%


=========================================================================
Total Test Time: 0.5913 seconds

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RNG-1.3.0.tar.gz (113.5 kB view details)

Uploaded Source

Built Distribution

RNG-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (105.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file RNG-1.3.0.tar.gz.

File metadata

  • Download URL: RNG-1.3.0.tar.gz
  • Upload date:
  • Size: 113.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.20.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.3

File hashes

Hashes for RNG-1.3.0.tar.gz
Algorithm Hash digest
SHA256 5bb8d9a7a1f52b3098bc82a740b795fd202786bbadf6922a64af007f33d7d208
MD5 acdc820ad35ae6d2782c98f8d981c0a7
BLAKE2b-256 9675e70f4a5ba531034767323e0978d152f0ee00d166e8f2e1748c8276459c5e

See more details on using hashes here.

File details

Details for the file RNG-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: RNG-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 105.8 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.20.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.3

File hashes

Hashes for RNG-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d880b99359a97b21c8962774e1b9f6c5253e015fcc1f642ae24d5eb08dc98395
MD5 8ac61dcc71064653f04b146c3cbc9c6a
BLAKE2b-256 da6de289348d1ef11191d5e07367f997af18238f789533884508eb5640c07951

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page