Skip to main content

Python API for the C++ Random library

Project description

Random Number Generator: RNG Storm Engine

Python API for the C++ Random library.

RNG is not suitable for cryptography, but it could be perfect for other random stuff like data science, experimental programming, A.I. and games.

Recommended Installation: $ pip install RNG

Number Types, Precision & Size:

  • Float: Python float -> double at the C++ layer.

    • Min Float: -1.7976931348623157e+308
    • Max Float: 1.7976931348623157e+308
    • Min Below Zero: -5e-324
    • Min Above Zero: 5e-324
  • Integer: Python int -> long long at the C++ layer.

    • Input & Output Range: (-2**63, 2**63) or approximately +/- 9.2 billion billion.
    • Min Integer: -9223372036854775807
    • Max Integer: 9223372036854775807

Random Binary Function

  • bernoulli(ratio_of_truth: float) -> bool
    • Bernoulli distribution.
    • @param ratio_of_truth :: the probability of True as a decimal. Expected input range: [0.0, 1.0], clamped.
    • @return :: True or False

Random Integer Functions

  • random_int(left_limit: int, right_limit: int) -> int
    • Flat uniform distribution.
    • 20x faster than random.randint()
    • @param left_limit :: input A.
    • @param right_limit :: input B.
    • @return :: random integer in the inclusive range [A, B] or [B, A] if B < A
  • random_below(upper_bound: int) -> int
    • Flat uniform distribution.
    • @param upper_bound :: inout A
    • @return :: random integer in exclusive range [0, A) or (A, 0] if A < 0
  • binomial(number_of_trials: int, probability: float) -> int
    • Based on the idea of flipping a coin and counting how many heads come up after some number of flips.
    • @param number_of_trials :: how many times to flip a coin.
    • @param probability :: how likely heads will be flipped. 0.5 is a fair coin. 1.0 is a double headed coin.
    • @return :: count of how many heads came up.
  • negative_binomial(trial_successes: int, probability: float) -> int
    • Based on the idea of flipping a coin as long as it takes to succeed.
    • @param trial_successes :: the required number of heads flipped to succeed.
    • @param probability :: how likely heads will be flipped. 0.50 is a fair coin.
    • @return :: the count of how many tails came up before the required number of heads.
  • geometric(probability: float) -> int
    • Same as random_negative_binomial(1, probability).
  • poisson(mean: float) -> int
    • @param mean :: sets the average output of the function.
    • @return :: random integer, poisson distribution centered on the mean.

Random Floating Point Functions

  • generate_canonical() -> float
    • Evenly distributes real values of maximum precision.
    • @return :: random Float in range {0.0, 1.0} biclusive. The spec defines the output range to be [0.0, 1.0).
      • biclusive: feature/bug rendering the exclusivity of this function a bit more mysterious than desired. This is a known compiler bug.
  • random_float(left_limit: float, right_limit: float) -> float
    • Suffers from the same biclusive feature/bug noted for generate_canonical().
    • @param left_limit :: input A
    • @param right_limit :: input B
    • @return :: random Float in range {A, B} biclusive. The spec defines the output range to be [A, B).
  • normalvariate(mean: float, std_dev: float) -> float
    • @param mean :: sets the average output of the function.
    • @param std_dev :: standard deviation. Specifies spread of data from the mean.
  • lognormvariate(log_mean: float, log_deviation: float) -> float
    • @param log_mean :: sets the log of the mean of the function.
    • @param log_deviation :: log of the standard deviation. Specifies spread of data from the mean.
  • exponential(lambda_rate: float) -> float
    • Produces random non-negative floating-point values, distributed according to probability density function.
    • @param lambda_rate :: λ constant rate of a random event per unit of time/distance.
    • @return :: The time/distance until the next random event. For example, this distribution describes the time between the clicks of a Geiger counter or the distance between point mutations in a DNA strand.
  • gammavariate(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Produces random positive floating-point values, distributed according to probability density function.
    • @param shape :: α the number of independent exponentially distributed random variables.
    • @param scale :: β the scale factor or the mean of each of the distributed random variables.
    • @return :: the sum of α independent exponentially distributed random variables, each of which has a mean of β.
  • weibullvariate(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Similar to the gamma distribution but uses a closed form distribution function.
    • Popular in reliability and survival analysis.
  • extreme_value(location: float, scale: float) -> float
    • Based on Extreme Value Theory.
    • Used for statistical models of the magnitude of earthquakes and volcanoes.
  • chi_squared(degrees_of_freedom: float) -> float
    • Used with the Chi Squared Test and Null Hypotheses to test if sample data fits an expected distribution.
  • cauchy(location: float, scale: float) -> float
    • @param location :: It specifies the location of the peak. The default value is 0.0.
    • @param scale :: It represents the half-width at half-maximum. The default value is 1.0.
    • @return :: Continuous Distribution.
  • fisher_f(degrees_of_freedom_1: float, degrees_of_freedom_2: float) -> float
    • F distributions often arise when comparing ratios of variances.
  • student_t(degrees_of_freedom: float) -> float
    • T distribution. Same as a normal distribution except it uses the sample standard deviation rather than the population standard deviation.
    • As degrees_of_freedom goes to infinity it converges with the normal distribution.

Engines

  • mersenne_twister_engine: internal only
    • Implements 64 bit Mersenne twister algorithm. Default engine on most systems.
  • linear_congruential_engine: internal only
    • Implements linear congruential algorithm.
  • subtract_with_carry_engine: internal only
    • Implements a subtract-with-carry (lagged Fibonacci) algorithm.
  • storm_engine: internal only
    • RNG: Custom Engine
    • Default Standard

Engine Adaptors

Engine adaptors generate pseudo-random numbers using another random number engine as entropy source. They are generally used to alter the spectral characteristics of the underlying engine.

  • discard_block_engine: internal only
    • Discards some output of a random number engine.
  • independent_bits_engine: internal only
    • Packs the output of a random number engine into blocks of a specified number of bits.
  • shuffle_order_engine: internal only
    • Delivers the output of a random number engine in a different order.

Seeds & Entropy Source

  • random_device: internal only
    • Non-deterministic uniform random bit generator, although implementations are allowed to implement random_device using a pseudo-random number engine if there is no support for non-deterministic random number generation.
  • seed_seq: internal only
    • General-purpose bias-eliminating scrambled seed sequence generator.

Distribution & Performance Test Suite

  • distribution_timer(func: staticmethod, *args, **kwargs) -> None
    • For statistical analysis of non-deterministic numeric functions.
    • @param func :: Function method or lambda to analyze. func(*args, **kwargs)
    • @optional_kw num_cycles :: Total number of samples for distribution analysis.
    • @optional_kw post_processor :: Used to scale a large set of data into a smaller set of groupings.
  • quick_test(n=10000) -> None
    • Runs a battery of tests for every random distribution function in the module.
    • @param n :: the total number of samples to collect for each test. Default: 10,000

Development Log

RNG 1.3.1
  • Fixed Typos
RNG 1.3.0
  • Storm Update
RNG 1.2.5
  • Low level clean up
RNG 1.2.4
  • Minor Typos Fixed
RNG 1.2.3
  • Documentation Update
  • Test Update
  • Bug Fixes
RNG 1.0.0 - 1.2.2, internal
  • API Changes:
    • randint changed to random_int
    • randbelow changed to random_below
    • random changed to generate_canonical
    • uniform changed to random_float
RNG 0.2.3
  • Bug Fixes
RNG 0.2.2
  • discrete() removed.
RNG 0.2.1
  • minor typos
  • discrete() depreciated.
RNG 0.2.0
  • Major Rebuild.
RNG 0.1.22
  • The RNG Storm Engine is now the default standard.
  • Experimental Vortex Engine added for testing.
RNG 0.1.21 beta
  • Small update to the testing suite.
RNG 0.1.20 beta
  • Changed default inputs for random_int and random_below to sane values.
    • random_int(left_limit=1, right_limit=20) down from -2**63, 2**63 - 1
    • random_below(upper_bound=10) down from 2**63 - 1
RNG 0.1.19 beta
  • Broke some fixed typos, for a change of pace.
RNG 0.1.18 beta
  • Fixed some typos.
RNG 0.1.17 beta
  • Major Refactoring.
  • New primary engine: Hurricane.
  • Experimental engine Typhoon added: random_below() only.
RNG 0.1.16 beta
  • Internal Engine Performance Tuning.
RNG 0.1.15 beta
  • Engine Testing.
RNG 0.1.14 beta
  • Fixed a few typos.
RNG 0.1.13 beta
  • Fixed a few typos.
RNG 0.1.12 beta
  • Major Test Suite Upgrade.
  • Major Bug Fixes.
    • Removed several 'foot-guns' in prep for fuzz testing in future releases.
RNG 0.1.11 beta
  • Fixed small bug in the install script.
RNG 0.1.10 beta
  • Fixed some typos.
RNG 0.1.9 beta
  • Fixed some typos.
RNG 0.1.8 beta
  • Fixed some typos.
  • More documentation added.
RNG 0.1.7 beta
  • The random_floating_point function renamed to random_float.
  • The function c_rand() has been removed as well as all the cruft it required.
  • Major Documentation Upgrade.
  • Fixed an issue where keyword arguments would fail to propagate. Both, positional args and kwargs now work as intended.
  • Added this Dev Log.
RNG 0.0.6 alpha
  • Minor ABI changes.
RNG 0.0.5 alpha
  • Tests redesigned slightly for Float functions.
RNG 0.0.4 alpha
  • Random Float Functions Implemented.
RNG 0.0.3 alpha
  • Random Integer Functions Implemented.
RNG 0.0.2 alpha
  • Random Bool Function Implemented.
RNG 0.0.1 pre-alpha
  • Planning & Design.

Distribution and Performance Test Suite

Quick Test: RNG Storm Engine

Round Trip Numeric Limits:
 Min Integer: -9223372036854775808
 Max Integer:  9223372036854775807
 Min Float: -1.7976931348623157e+308
 Max Float:  1.7976931348623157e+308
 Min Below Zero: -5e-324
 Min Above Zero:  5e-324


Binary Tests

Output Analysis: bernoulli(0.3333333333333333)
Typical Timing: 63 ± 1 ns
Raw Samples: False, False, False, True, False
Statistics of 1000 Samples:
 Minimum: False
 Median: False
 Maximum: True
 Mean: 0.31
 Std Deviation: 0.46272466339510593
Distribution of 10000 Samples:
 False: 66.72%
 True: 33.28%


Integer Tests

Base Case
Output Analysis: Random.randint(1, 6)
Typical Timing: 1157 ± 10 ns
Raw Samples: 4, 4, 4, 4, 1
Statistics of 1000 Samples:
 Minimum: 1
 Median: 3
 Maximum: 6
 Mean: 3.392
 Std Deviation: 1.6832020583308378
Distribution of 10000 Samples:
 1: 17.33%
 2: 15.99%
 3: 16.52%
 4: 16.98%
 5: 16.35%
 6: 16.83%

Output Analysis: random_int(1, 6)
Typical Timing: 63 ± 3 ns
Raw Samples: 4, 6, 1, 2, 5
Statistics of 1000 Samples:
 Minimum: 1
 Median: 3
 Maximum: 6
 Mean: 3.539
 Std Deviation: 1.6701102563209018
Distribution of 10000 Samples:
 1: 16.98%
 2: 16.72%
 3: 17.0%
 4: 16.89%
 5: 16.12%
 6: 16.29%

Base Case
Output Analysis: Random.randrange(6)
Typical Timing: 813 ± 10 ns
Raw Samples: 4, 0, 2, 3, 3
Statistics of 1000 Samples:
 Minimum: 0
 Median: 2
 Maximum: 5
 Mean: 2.475
 Std Deviation: 1.6918147762793767
Distribution of 10000 Samples:
 0: 16.59%
 1: 17.05%
 2: 16.54%
 3: 16.51%
 4: 16.59%
 5: 16.72%

Output Analysis: random_below(6)
Typical Timing: 63 ± 1 ns
Raw Samples: 5, 2, 0, 3, 1
Statistics of 1000 Samples:
 Minimum: 0
 Median: 2
 Maximum: 5
 Mean: 2.455
 Std Deviation: 1.7265445131695725
Distribution of 10000 Samples:
 0: 17.48%
 1: 15.97%
 2: 16.27%
 3: 16.6%
 4: 16.72%
 5: 16.96%

Output Analysis: binomial(4, 0.5)
Typical Timing: 157 ± 3 ns
Raw Samples: 2, 3, 2, 2, 2
Statistics of 1000 Samples:
 Minimum: 0
 Median: 2
 Maximum: 4
 Mean: 1.989
 Std Deviation: 0.9715054414787511
Distribution of 10000 Samples:
 0: 6.06%
 1: 25.21%
 2: 37.42%
 3: 25.26%
 4: 6.05%

Output Analysis: negative_binomial(5, 0.75)
Typical Timing: 125 ± 1 ns
Raw Samples: 1, 1, 1, 2, 1
Statistics of 1000 Samples:
 Minimum: 0
 Median: 1
 Maximum: 8
 Mean: 1.683
 Std Deviation: 1.5371642312628389
Distribution of 10000 Samples:
 0: 24.08%
 1: 29.55%
 2: 21.71%
 3: 13.13%
 4: 6.51%
 5: 2.81%
 6: 1.44%
 7: 0.57%
 8: 0.17%
 10: 0.02%
 14: 0.01%

Output Analysis: geometric(0.75)
Typical Timing: 32 ± 3 ns
Raw Samples: 1, 0, 0, 0, 0
Statistics of 1000 Samples:
 Minimum: 0
 Median: 0
 Maximum: 5
 Mean: 0.356
 Std Deviation: 0.6983922620932679
Distribution of 10000 Samples:
 0: 75.25%
 1: 18.51%
 2: 4.48%
 3: 1.27%
 4: 0.39%
 5: 0.07%
 6: 0.02%
 9: 0.01%

Output Analysis: poisson(4.5)
Typical Timing: 94 ± 3 ns
Raw Samples: 7, 10, 5, 4, 5
Statistics of 1000 Samples:
 Minimum: 0
 Median: 4
 Maximum: 12
 Mean: 4.498
 Std Deviation: 2.095802564267061
Distribution of 10000 Samples:
 0: 0.95%
 1: 4.83%
 2: 11.23%
 3: 16.93%
 4: 19.2%
 5: 17.24%
 6: 12.79%
 7: 8.59%
 8: 4.35%
 9: 2.24%
 10: 0.92%
 11: 0.47%
 12: 0.16%
 13: 0.07%
 14: 0.01%
 15: 0.01%
 16: 0.01%


Floating Point Tests

Base Case
Output Analysis: Random.random()
Typical Timing: 32 ± 8 ns
Raw Samples: 0.7334504747915658, 0.05901215293912998, 0.9836779956498556, 0.24254163839637877, 0.3723880892422583
Statistics of 1000 Samples:
 Minimum: 0.001047391622954419
 Median: (0.5050620434120398, 0.5051706591823361)
 Maximum: 0.9992670731998551
 Mean: 0.5014841278358894
 Std Deviation: 0.2890166859694341
Post-processor Distribution of 10000 Samples using round method:
 0: 49.94%
 1: 50.06%

Output Analysis: generate_canonical()
Typical Timing: 32 ± 8 ns
Raw Samples: 0.1864582609055042, 0.6147029479102267, 0.8171777075025716, 0.03578930784558717, 0.6100831394799711
Statistics of 1000 Samples:
 Minimum: 2.4461292767260666e-05
 Median: (0.5169964032880487, 0.5184421652125217)
 Maximum: 0.999896384182444
 Mean: 0.5109666687208313
 Std Deviation: 0.29522258455113637
Post-processor Distribution of 10000 Samples using round method:
 0: 49.76%
 1: 50.24%

Output Analysis: random_float(0.0, 10.0)
Typical Timing: 32 ± 8 ns
Raw Samples: 4.014913457225556, 4.590044534866856, 4.1205526364298155, 7.196762548370915, 5.158790430975921
Statistics of 1000 Samples:
 Minimum: 0.012890134573488633
 Median: (4.941857920132398, 4.94531825321242)
 Maximum: 9.983617206073513
 Mean: 4.9924463895489
 Std Deviation: 2.9030745062815493
Post-processor Distribution of 10000 Samples using floor method:
 0: 10.33%
 1: 9.63%
 2: 10.48%
 3: 10.1%
 4: 10.07%
 5: 10.13%
 6: 9.97%
 7: 9.94%
 8: 9.86%
 9: 9.49%

Base Case
Output Analysis: Random.expovariate(1.0)
Typical Timing: 313 ± 7 ns
Raw Samples: 0.8405347198643697, 3.9338984100284944, 0.29143120688425417, 0.5078882269472753, 2.0885618145022056
Statistics of 1000 Samples:
 Minimum: 0.000393368805801286
 Median: (0.6979599588346597, 0.6980050576379635)
 Maximum: 8.436382597372127
 Mean: 1.0040916154224218
 Std Deviation: 1.029410737822996
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 62.75%
 1: 23.22%
 2: 9.08%
 3: 3.24%
 4: 1.15%
 5: 0.35%
 6: 0.09%
 7: 0.08%
 8: 0.04%

Output Analysis: expovariate(1.0)
Typical Timing: 63 ± 1 ns
Raw Samples: 0.45163825464630664, 2.1146970580511284, 1.7971278139018254, 2.2373305896986717, 0.015343805738820961
Statistics of 1000 Samples:
 Minimum: 0.00010707394382878657
 Median: (0.7193980060768663, 0.721352357683066)
 Maximum: 7.28385705693114
 Mean: 1.0252421665648306
 Std Deviation: 1.0479311465202337
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 63.45%
 1: 23.08%
 2: 8.43%
 3: 3.27%
 4: 1.08%
 5: 0.47%
 6: 0.12%
 7: 0.07%
 8: 0.03%

Base Case
Output Analysis: Random.gammavariate(1.0, 1.0)
Typical Timing: 469 ± 7 ns
Raw Samples: 0.32531495474311595, 1.392140006494708, 0.0530086665022029, 1.875063877486761, 1.4877123927777618
Statistics of 1000 Samples:
 Minimum: 0.0008695053740157868
 Median: (0.6915826118919567, 0.694016632428719)
 Maximum: 8.003692778108036
 Mean: 0.9775036418005408
 Std Deviation: 0.966768188921642
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 63.17%
 1: 23.17%
 2: 8.53%
 3: 3.24%
 4: 1.15%
 5: 0.53%
 6: 0.13%
 7: 0.06%
 8: 0.01%
 9: 0.01%

Output Analysis: gammavariate(1.0, 1.0)
Typical Timing: 63 ± 4 ns
Raw Samples: 1.9333489575252805, 1.7220291168140376, 1.357953302503521, 1.1556595765222129, 1.7954943378156107
Statistics of 1000 Samples:
 Minimum: 0.0014738167745119808
 Median: (0.6964822146497854, 0.6978489621983266)
 Maximum: 6.602617980186466
 Mean: 1.0341158497711047
 Std Deviation: 1.0543199649525525
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 62.78%
 1: 23.59%
 2: 8.52%
 3: 3.32%
 4: 1.16%
 5: 0.4%
 6: 0.13%
 7: 0.08%
 8: 0.01%
 9: 0.01%

Base Case
Output Analysis: Random.weibullvariate(1.0, 1.0)
Typical Timing: 407 ± 8 ns
Raw Samples: 0.3990229611507635, 0.2259312540951118, 1.8502699107220673, 0.46376175375758266, 0.9401120707468325
Statistics of 1000 Samples:
 Minimum: 0.0012259311050140662
 Median: (0.6578877009623624, 0.6590333908209903)
 Maximum: 8.646982098966204
 Mean: 0.9896440647090687
 Std Deviation: 0.9949289812693072
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 62.93%
 1: 23.51%
 2: 8.57%
 3: 3.05%
 4: 1.17%
 5: 0.5%
 6: 0.18%
 7: 0.05%
 8: 0.04%

Output Analysis: weibullvariate(1.0, 1.0)
Typical Timing: 94 ± 5 ns
Raw Samples: 0.2652234986823241, 1.942219764547752, 0.8175342897304099, 3.2395644480947223, 0.3251500266609827
Statistics of 1000 Samples:
 Minimum: 0.0009383493512440244
 Median: (0.7392693227562032, 0.7408622308526437)
 Maximum: 7.116928208385074
 Mean: 1.073427948574414
 Std Deviation: 1.0632605080340314
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 63.59%
 1: 21.6%
 2: 9.25%
 3: 3.6%
 4: 1.25%
 5: 0.43%
 6: 0.18%
 7: 0.06%
 8: 0.03%
 9: 0.01%

Output Analysis: extreme_value(0.0, 1.0)
Typical Timing: 63 ± 8 ns
Raw Samples: 0.4041348557748404, 2.079874043610171, 2.650992577878582, 1.4452910259891822, 2.426570955352242
Statistics of 1000 Samples:
 Minimum: -1.980907380867561
 Median: (0.38243820781379145, 0.3829081079501128)
 Maximum: 6.621516306831826
 Mean: 0.5845110648095324
 Std Deviation: 1.2719835493558054
Post-processor Distribution of 10000 Samples using round method:
 -2: 1.19%
 -1: 17.49%
 0: 35.19%
 1: 25.32%
 2: 12.72%
 3: 5.16%
 4: 1.94%
 5: 0.64%
 6: 0.19%
 7: 0.11%
 8: 0.04%
 12: 0.01%

Base Case
Output Analysis: Random.gauss(5.0, 2.0)
Typical Timing: 563 ± 8 ns
Raw Samples: 7.8719343283679555, 3.461012775865494, 5.9052321692218, 4.959700725749113, 5.922592217099527
Statistics of 1000 Samples:
 Minimum: -1.4012683758451052
 Median: (5.09840804162951, 5.107753450018516)
 Maximum: 11.41817677570604
 Mean: 5.030888806308807
 Std Deviation: 2.053357747529813
Post-processor Distribution of 10000 Samples using round method:
 -4: 0.01%
 -3: 0.02%
 -2: 0.08%
 -1: 0.26%
 0: 0.84%
 1: 3.01%
 2: 6.5%
 3: 12.24%
 4: 17.89%
 5: 19.33%
 6: 17.29%
 7: 11.9%
 8: 6.6%
 9: 2.76%
 10: 0.99%
 11: 0.22%
 12: 0.04%
 14: 0.02%

Output Analysis: normalvariate(5.0, 2.0)
Typical Timing: 94 ± 3 ns
Raw Samples: 6.526375629211048, 2.5494637436879057, 4.183962748599225, 2.7367608198964137, 3.5984503200751843
Statistics of 1000 Samples:
 Minimum: -1.0047300993665416
 Median: (5.183216842180906, 5.185759978855302)
 Maximum: 12.46403325055231
 Mean: 5.150521636805498
 Std Deviation: 2.0157705219874242
Post-processor Distribution of 10000 Samples using round method:
 -3: 0.01%
 -2: 0.06%
 -1: 0.31%
 0: 0.99%
 1: 2.66%
 2: 6.48%
 3: 11.36%
 4: 16.95%
 5: 20.01%
 6: 18.05%
 7: 12.19%
 8: 6.8%
 9: 2.96%
 10: 0.87%
 11: 0.17%
 12: 0.12%
 13: 0.01%

Base Case
Output Analysis: Random.lognormvariate(1.6, 0.25)
Typical Timing: 844 ± 22 ns
Raw Samples: 4.573748753630625, 4.024353144308833, 7.417300255678902, 5.40144220310192, 4.496223892141358
Statistics of 1000 Samples:
 Minimum: 2.136424339774537
 Median: (4.918540090355226, 4.920454762077152)
 Maximum: 10.917115671377365
 Mean: 5.069294358049545
 Std Deviation: 1.2895726405200065
Post-processor Distribution of 10000 Samples using round method:
 2: 0.21%
 3: 8.41%
 4: 26.64%
 5: 31.83%
 6: 19.33%
 7: 8.87%
 8: 3.21%
 9: 1.08%
 10: 0.31%
 11: 0.1%
 12: 0.01%

Output Analysis: lognormvariate(1.6, 0.25)
Typical Timing: 94 ± 7 ns
Raw Samples: 4.266335268237276, 5.649897741314483, 3.615275266835767, 4.404951715860641, 4.7955648798784605
Statistics of 1000 Samples:
 Minimum: 2.111278969281614
 Median: (4.8142380751836376, 4.817354348455785)
 Maximum: 10.136880675576949
 Mean: 5.040687969800841
 Std Deviation: 1.3213062658762191
Post-processor Distribution of 10000 Samples using round method:
 2: 0.28%
 3: 8.34%
 4: 26.54%
 5: 30.64%
 6: 19.67%
 7: 9.42%
 8: 3.51%
 9: 1.17%
 10: 0.3%
 11: 0.11%
 12: 0.02%

Output Analysis: chi_squared(1.0)
Typical Timing: 125 ± 4 ns
Raw Samples: 0.42697378999700814, 0.5429027726908335, 2.031049672176071, 0.5098527172971277, 0.042873029062290735
Statistics of 1000 Samples:
 Minimum: 1.133633180995392e-05
 Median: (0.45048924276074015, 0.4507311430937568)
 Maximum: 13.378597809087994
 Mean: 1.0066583789534054
 Std Deviation: 1.4509507177964636
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 68.06%
 1: 16.15%
 2: 7.66%
 3: 3.75%
 4: 2.02%
 5: 1.05%
 6: 0.75%
 7: 0.29%
 8: 0.19%
 9: 0.08%

Output Analysis: cauchy(0.0, 1.0)
Typical Timing: 63 ± 8 ns
Raw Samples: 0.11087074883884336, -1.8060519907337242, -0.40842434577223435, -3.1528238189212203, -0.47652811926286387
Statistics of 1000 Samples:
 Minimum: -115.9871384065064
 Median: (-0.016619559251362662, -0.01359063139237585)
 Maximum: 1909.4296523197977
 Mean: 1.727260748019257
 Std Deviation: 61.407677279538106
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 26.34%
 1: 11.61%
 2: 5.3%
 3: 3.93%
 4: 3.1%
 5: 2.78%
 6: 3.76%
 7: 5.56%
 8: 11.39%
 9: 26.23%

Output Analysis: fisher_f(8.0, 8.0)
Typical Timing: 188 ± 8 ns
Raw Samples: 0.7307355228290525, 0.7390686777867285, 0.42973495752333074, 1.6098926293373732, 2.072548573959181
Statistics of 1000 Samples:
 Minimum: 0.013298914707013946
 Median: (0.9617312961087927, 0.9639397434067868)
 Maximum: 23.789159647884222
 Mean: 1.336227297312248
 Std Deviation: 1.3820594685495116
Post-processor Distribution of 10000 Samples using floor_mod_10 method:
 0: 49.75%
 1: 33.06%
 2: 10.5%
 3: 3.8%
 4: 1.64%
 5: 0.54%
 6: 0.32%
 7: 0.13%
 8: 0.17%
 9: 0.09%

Output Analysis: student_t(8.0)
Typical Timing: 125 ± 7 ns
Raw Samples: 0.836850584363592, 0.6673969559420777, -1.6441778936082134, -2.542843722716689, 0.5890349511027828
Statistics of 1000 Samples:
 Minimum: -4.516728329846627
 Median: (-0.012045677692215937, -0.005382657725861132)
 Maximum: 4.184117880665111
 Mean: 0.025852941112015856
 Std Deviation: 1.1624655011533154
Post-processor Distribution of 10000 Samples using round method:
 -7: 0.01%
 -5: 0.06%
 -4: 0.38%
 -3: 1.27%
 -2: 6.54%
 -1: 23.36%
 0: 37.16%
 1: 22.74%
 2: 6.62%
 3: 1.43%
 4: 0.32%
 5: 0.06%
 6: 0.03%
 7: 0.02%


=========================================================================
Total Test Time: 0.5963 seconds

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RNG-1.3.1.tar.gz (113.6 kB view details)

Uploaded Source

Built Distribution

RNG-1.3.1-cp37-cp37m-macosx_10_9_x86_64.whl (105.8 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file RNG-1.3.1.tar.gz.

File metadata

  • Download URL: RNG-1.3.1.tar.gz
  • Upload date:
  • Size: 113.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.20.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.3

File hashes

Hashes for RNG-1.3.1.tar.gz
Algorithm Hash digest
SHA256 a1a1d603ae1b381c333f65d7039c0e5f38171f9d2fc8034c662d1d53b558959f
MD5 522316d89c8beb7039534e7f4a44a3ce
BLAKE2b-256 f203b917fd9c27b8182629e5b6f96d0695fb68c86de90a7e43aafa0068f63f06

See more details on using hashes here.

File details

Details for the file RNG-1.3.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: RNG-1.3.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 105.8 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.20.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.3

File hashes

Hashes for RNG-1.3.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 496ae69a76d179685a808024870ff06bc583c7ec038dfc06e3100cfbc3755afa
MD5 e56ee11f81555c84a1f3300d0b64cb83
BLAKE2b-256 83175dcac9f30eff8838fc4adbd96889f311e3aa6fb575408e2df251c6d20bf4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page