Skip to main content

Python3 API for the C++ Random library

Project description

RNG Engine for Python

Python3 interface to the c++ random library

Designed for python developers familiar with the c++ random header

Sister Projects:

Support these and other random projects: https://www.patreon.com/brokencode

Warning: RNG is not suitable for cryptography or secure hashing.

Quick Install for Mac and Linux: $ pip install RNG, import RNG as needed.


Random Generator Signatures

Random Boolean Variates

  • bernoulli_distribution(ratio_of_truth) -> bool

Random Integer Variates

  • uniform_int_distribution(left_limit: int, right_limit: int) -> int
  • binomial_distribution(number_of_trials: int, probability: float) -> int
  • negative_binomial_distribution(number_of_trials: int, probability: float) -> int
  • geometric_distribution(probability: float) -> int
  • poisson_distribution(mean: float) -> int

Random Float Variates

  • generate_canonical() -> float
  • uniform_real_distribution(left_limit: float, right_limit: float) -> float
  • exponential_distribution(lambda_rate: float) -> float
  • gamma_distribution(shape: float, scale: float) -> float
  • weibull_distribution(shape: float, scale: float) -> float
  • normal_distribution(mean: float, std_dev: float) -> float
  • lognormal_distribution(log_mean: float, log_deviation: float) -> float
  • extreme_value_distribution(location: float, scale: float) -> float
  • chi_squared_distribution(degrees_of_freedom: float) -> float
  • cauchy_distribution(location: float, scale: float) -> float
  • fisher_f_distribution(degrees_of_freedom_1: float, degrees_of_freedom_2: float) -> float
  • student_t_distribution(degrees_of_freedom: float) -> float

Random Generator Specifications

Random Boolean

  • bernoulli_distribution(ratio_of_truth: float) -> bool
    • Bernoulli distribution.
    • @param ratio_of_truth :: the probability of True. Expected input range: [0.0, 1.0], clamped.
    • @return :: True or False
$ python3
Python 3.7.3
>>> import RNG

>>> RNG.bernoulli_distribution(1.0)
True
>>> RNG.bernoulli_distribution(0.0)
False

>>> RNG.distribution(RNG.bernoulli_distribution, 1/3)
Statistics of 1000 Samples:
 Minimum: False
 Median: False
 Maximum: True
 Mean: 0.368
 Std Deviation: 0.4825026516080599
Distribution of 10000 Samples:
 False: 66.73%
 True: 33.27%

>>> RNG.distribution(RNG.bernoulli_distribution, 2/3)
Statistics of 1000 Samples:
 Minimum: False
 Median: True
 Maximum: True
 Mean: 0.659
 Std Deviation: 0.47428255707325345
Distribution of 10000 Samples:
 False: 33.65%
 True: 66.35%

Random Integer

  • uniform_int_distribution(left_limit: int, right_limit: int) -> int
    • Flat uniform distribution.
    • 20x faster than random.randint()
    • @param left_limit :: input A.
    • @param right_limit :: input B.
    • @return :: random integer in the inclusive range [A, B] or [B, A] if B < A
$ python3
Python 3.7.3
>>> import RNG
>>> RNG.uniform_int_distribution(1, 100)
42
>>> RNG.distribution(RNG.uniform_int_distribution, 1, 10)
Statistics of 1000 Samples:
 Minimum: 1
 Median: 6
 Maximum: 10
 Mean: 5.456
 Std Deviation: 2.881730099847723
Distribution of 10000 Samples:
 1: 10.14%
 2: 9.48%
 3: 9.82%
 4: 10.28%
 5: 10.14%
 6: 9.91%
 7: 9.94%
 8: 9.66%
 9: 10.49%
 10: 10.14%

>>> RNG.distribution(RNG.uniform_int_distribution, 10, 1)
Statistics of 1000 Samples:
 Minimum: 1
 Median: 6
 Maximum: 10
 Mean: 5.513
 Std Deviation: 2.8106459632495038
Distribution of 10000 Samples:
 1: 10.01%
 2: 10.17%
 3: 10.36%
 4: 9.84%
 5: 9.62%
 6: 9.91%
 7: 10.36%
 8: 9.8%
 9: 9.93%
 10: 10.0%
  • RNG.binomial_distribution(number_of_trials: int, probability: float) -> int
    • Based on the idea of flipping a coin and counting how many heads come up after some number of flips.
    • @param number_of_trials :: how many times to flip a coin.
    • @param probability :: how likely heads will be flipped. 0.5 is a fair coin. 1.0 is a double headed coin.
    • @return :: count of how many heads came up.
  • RNG.negative_binomial_distribution(trial_successes: int, probability: float) -> int
    • Based on the idea of flipping a coin as long as it takes to succeed.
    • @param trial_successes :: the required number of heads flipped to succeed.
    • @param probability :: how likely heads will be flipped. 0.50 is a fair coin.
    • @return :: the count of how many tails came up before the required number of heads.
  • RNG.geometric_distribution(probability: float) -> int
    • Same as random_negative_binomial(1, probability).
  • RNG.poisson_distribution(mean: float) -> int
    • @param mean :: sets the average output of the function.
    • @return :: random integer, poisson distribution centered on the mean.

Random Floating Point

  • RNG.generate_canonical() -> float
    • Evenly distributes real values of maximum precision.
    • @return :: random Float in range {0.0, 1.0} biclusive. The spec defines the output range to be [0.0, 1.0).
      • biclusive: feature/bug rendering the exclusivity of this function a bit more mysterious than desired. This is a known compiler bug.
  • RNG.uniform_real_distribution(left_limit: float, right_limit: float) -> float
    • Suffers from the same biclusive feature/bug noted for generate_canonical().
    • @param left_limit :: input A
    • @param right_limit :: input B
    • @return :: random Float in range {A, B} biclusive. The spec defines the output range to be [A, B).
  • RNG.normal_distribution(mean: float, std_dev: float) -> float
    • @param mean :: sets the average output of the function.
    • @param std_dev :: standard deviation. Specifies spread of data from the mean.
  • RNG.lognormal_distribution(log_mean: float, log_deviation: float) -> float
    • @param log_mean :: sets the log of the mean of the function.
    • @param log_deviation :: log of the standard deviation. Specifies spread of data from the mean.
  • RNG.exponential_distribution(lambda_rate: float) -> float
    • Produces random non-negative floating-point values, distributed according to probability density function.
    • @param lambda_rate :: λ constant rate of a random event per unit of time/distance.
    • @return :: The time/distance until the next random event. For example, this distribution describes the time between the clicks of a Geiger counter or the distance between point mutations in a DNA strand.
  • RNG.gamma_distribution(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Produces random positive floating-point values, distributed according to probability density function.
    • @param shape :: α the number of independent exponentially distributed random variables.
    • @param scale :: β the scale factor or the mean of each of the distributed random variables.
    • @return :: the sum of α independent exponentially distributed random variables, each of which has a mean of β.
  • RNG.weibull_distribution(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Similar to the gamma distribution but uses a closed form distribution function.
    • Popular in reliability and survival analysis.
  • RNG.extreme_value_distribution(location: float, scale: float) -> float
    • Based on Extreme Value Theory.
    • Used for statistical models of the magnitude of earthquakes and volcanoes.
  • RNG.chi_squared_distribution(degrees_of_freedom: float) -> float
    • Used with the Chi Squared Test and Null Hypotheses to test if sample data fits an expected distribution.
  • RNG.cauchy_distribution(location: float, scale: float) -> float
    • @param location :: It specifies the location of the peak. The default value is 0.0.
    • @param scale :: It represents the half-width at half-maximum. The default value is 1.0.
    • @return :: Continuous Distribution.
  • RNG.fisher_f_distribution(degrees_of_freedom_1: float, degrees_of_freedom_2: float) -> float
    • F distributions often arise when comparing ratios of variances.
  • RNG.student_t_distribution(degrees_of_freedom: float) -> float
    • T distribution. Same as a normal distribution except it uses the sample standard deviation rather than the population standard deviation.
    • As degrees_of_freedom goes to infinity it converges with the normal distribution.

Distribution & Performance Test Suite

  • RNG.timer(func: staticmethod, *args, **kwargs) -> None
    • For temporal analysis of non-deterministic functions.
    • @param func :: Function, method or lambda to analyze. func(*args, **kwargs)
  • RNG.distribution(func: staticmethod, *args, **kwargs) -> None
    • For statistical analysis of non-deterministic functions.
    • @param func :: Function, method or lambda to analyze. func(*args, **kwargs)
  • RNG.distribution_timer(func: staticmethod, *args, **kwargs) -> None
    • For statistical and temporal analysis of non-deterministic functions.
    • @param func :: Function, method or lambda to analyze. func(*args, **kwargs)
    • @optional_kw num_cycles :: Total number of samples for distribution analysis, statistical analysis is limited to the first 1000 samples, timing estimates are handled separately.
    • @optional_kw post_processor :: Used to scale a large set of data into a smaller set of groupings, this function is invoked on the output and collated after the stats battery.
  • RNG.quick_test() -> None
    • Runs a quick battery of tests for every function in the module.

Development Log

RNG 1.4.0
  • API Refactoring
RNG 1.3.4
  • Storm Update 3.1.1
RNG 1.3.3
  • Installer script update
RNG 1.3.2
  • Minor Bug Fix
RNG 1.3.1
  • Test Update
RNG 1.3.1
  • Fixed Typos
RNG 1.3.0
  • Storm Update
RNG 1.2.5
  • Low level clean up
RNG 1.2.4
  • Minor Typos Fixed
RNG 1.2.3
  • Documentation Update
  • Test Update
  • Bug Fixes
RNG 1.0.0 - 1.2.2, internal
  • API Changes:
    • randint changed to random_int
    • randbelow changed to random_below
    • random changed to generate_canonical
    • uniform changed to random_float
RNG 0.2.3
  • Bug Fixes
RNG 0.2.2
  • discrete() removed.
RNG 0.2.1
  • minor typos
  • discrete() depreciated.
RNG 0.2.0
  • Major Rebuild.
RNG 0.1.22
  • The RNG Storm Engine is now the default standard.
  • Experimental Vortex Engine added for testing.
RNG 0.1.21 beta
  • Small update to the testing suite.
RNG 0.1.20 beta
  • Changed default inputs for random_int and random_below to sane values.
    • random_int(left_limit=1, right_limit=20) down from -2**63, 2**63 - 1
    • random_below(upper_bound=10) down from 2**63 - 1
RNG 0.1.19 beta
  • Broke some fixed typos, for a change of pace.
RNG 0.1.18 beta
  • Fixed some typos.
RNG 0.1.17 beta
  • Major Refactoring.
  • New primary engine: Hurricane.
  • Experimental engine Typhoon added: random_below() only.
RNG 0.1.16 beta
  • Internal Engine Performance Tuning.
RNG 0.1.15 beta
  • Engine Testing.
RNG 0.1.14 beta
  • Fixed a few typos.
RNG 0.1.13 beta
  • Fixed a few typos.
RNG 0.1.12 beta
  • Major Test Suite Upgrade.
  • Major Bug Fixes.
    • Removed several 'foot-guns' in prep for fuzz testing in future releases.
RNG 0.1.11 beta
  • Fixed small bug in the install script.
RNG 0.1.10 beta
  • Fixed some typos.
RNG 0.1.9 beta
  • Fixed some typos.
RNG 0.1.8 beta
  • Fixed some typos.
  • More documentation added.
RNG 0.1.7 beta
  • The random_floating_point function renamed to random_float.
  • The function c_rand() has been removed as well as all the cruft it required.
  • Major Documentation Upgrade.
  • Fixed an issue where keyword arguments would fail to propagate. Both, positional args and kwargs now work as intended.
  • Added this Dev Log.
RNG 0.0.6 alpha
  • Minor ABI changes.
RNG 0.0.5 alpha
  • Tests redesigned slightly for Float functions.
RNG 0.0.4 alpha
  • Random Float Functions Implemented.
RNG 0.0.3 alpha
  • Random Integer Functions Implemented.
RNG 0.0.2 alpha
  • Random Bool Function Implemented.
RNG 0.0.1 pre-alpha
  • Planning & Design.

Distribution and Performance Test Suite

Quick Test: RNG Storm Engine
=========================================================================

Boolean Distribution Variates

Output Analysis: bernoulli_distribution(0.3333333333333333)
Typical Timing: 63 ± 1 ns
Statistics of 1024 samples:
 Minimum: False
 Median: False
 Maximum: True
 Mean: 0.3349609375
 Std Deviation: 0.47220743494806877
Distribution of 10240 samples:
 False: 66.962890625%
 True: 33.037109375%

Output Analysis: bernoulli_distribution(0.6666666666666666)
Typical Timing: 63 ± 1 ns
Statistics of 1024 samples:
 Minimum: False
 Median: True
 Maximum: True
 Mean: 0.6552734375
 Std Deviation: 0.47551127337020155
Distribution of 10240 samples:
 False: 32.275390625%
 True: 67.724609375%


Integer Distribution Variates

Base Case
Output Analysis: Random.randint(1, 6)
Typical Timing: 1125 ± 19 ns
Statistics of 1024 samples:
 Minimum: 1
 Median: 4
 Maximum: 6
 Mean: 3.5625
 Std Deviation: 1.7147511354422509
Distribution of 10240 samples:
 1: 16.728515625%
 2: 16.708984375%
 3: 16.03515625%
 4: 16.23046875%
 5: 17.001953125%
 6: 17.294921875%

Output Analysis: uniform_int_distribution(1, 6)
Typical Timing: 63 ± 12 ns
Statistics of 1024 samples:
 Minimum: 1
 Median: 3
 Maximum: 6
 Mean: 3.4921875
 Std Deviation: 1.673769079816962
Distribution of 10240 samples:
 1: 16.62109375%
 2: 16.494140625%
 3: 16.640625%
 4: 17.412109375%
 5: 16.572265625%
 6: 16.259765625%

Output Analysis: binomial_distribution(4, 0.5)
Typical Timing: 157 ± 1 ns
Statistics of 1024 samples:
 Minimum: 0
 Median: 2
 Maximum: 4
 Mean: 1.9599609375
 Std Deviation: 0.9942937872304264
Distribution of 10240 samples:
 0: 6.435546875%
 1: 24.7265625%
 2: 37.431640625%
 3: 25.37109375%
 4: 6.03515625%

Output Analysis: negative_binomial_distribution(5, 0.75)
Typical Timing: 125 ± 6 ns
Statistics of 1024 samples:
 Minimum: 0
 Median: 1
 Maximum: 8
 Mean: 1.7099609375
 Std Deviation: 1.510102311643158
Distribution of 10240 samples:
 0: 24.052734375%
 1: 29.35546875%
 2: 22.529296875%
 3: 13.291015625%
 4: 5.986328125%
 5: 2.7734375%
 6: 1.25%
 7: 0.52734375%
 8: 0.15625%
 9: 0.048828125%
 10: 0.01953125%
 12: 0.009765625%

Output Analysis: geometric_distribution(0.75)
Typical Timing: 63 ± 1 ns
Statistics of 1024 samples:
 Minimum: 0
 Median: 0
 Maximum: 4
 Mean: 0.2998046875
 Std Deviation: 0.6086376956069064
Distribution of 10240 samples:
 0: 75.78125%
 1: 18.486328125%
 2: 4.4140625%
 3: 0.95703125%
 4: 0.2734375%
 5: 0.087890625%

Output Analysis: poisson_distribution(4.5)
Typical Timing: 94 ± 6 ns
Statistics of 1024 samples:
 Minimum: 0
 Median: 4
 Maximum: 15
 Mean: 4.6005859375
 Std Deviation: 2.2177722674656404
Distribution of 10240 samples:
 0: 0.986328125%
 1: 4.90234375%
 2: 10.9375%
 3: 17.275390625%
 4: 18.6328125%
 5: 16.73828125%
 6: 12.470703125%
 7: 8.671875%
 8: 4.90234375%
 9: 2.607421875%
 10: 1.123046875%
 11: 0.537109375%
 12: 0.13671875%
 13: 0.048828125%
 14: 0.01953125%
 15: 0.009765625%


Floating Point Distribution Variates

Base Case
Output Analysis: Random.random()
Typical Timing: 32 ± 16 ns
Statistics of 1024 samples:
 Minimum: 0.00032892642793780347
 Median: (0.4894346962693171, 0.4898661803837664)
 Maximum: 0.9990303489773977
 Mean: 0.48990903122609464
 Std Deviation: 0.2877923204977123
Post-processor distribution of 10240 samples using round method:
 0: 50.21484375%
 1: 49.78515625%

Output Analysis: generate_canonical()
Typical Timing: 32 ± 16 ns
Statistics of 1024 samples:
 Minimum: 0.0008802851804854906
 Median: (0.5239102176773246, 0.5245990843200793)
 Maximum: 0.9982303174860803
 Mean: 0.5096530375857149
 Std Deviation: 0.28789444569003747
Post-processor distribution of 10240 samples using round method:
 0: 49.8828125%
 1: 50.1171875%

Output Analysis: uniform_real_distribution(0.0, 10.0)
Typical Timing: 32 ± 15 ns
Statistics of 1024 samples:
 Minimum: 0.004116377520471437
 Median: (4.881844004595013, 4.891818588700552)
 Maximum: 9.995091346151177
 Mean: 4.969692806231672
 Std Deviation: 2.957758167769482
Post-processor distribution of 10240 samples using floor method:
 0: 10.009765625%
 1: 10.390625%
 2: 10.244140625%
 3: 9.853515625%
 4: 9.6484375%
 5: 9.74609375%
 6: 10.21484375%
 7: 9.70703125%
 8: 10.078125%
 9: 10.107421875%

Base Case
Output Analysis: Random.expovariate(1.0)
Typical Timing: 313 ± 12 ns
Statistics of 1024 samples:
 Minimum: 0.0016695808311731676
 Median: (0.7323344388886976, 0.7338114824809282)
 Maximum: 7.254103481579576
 Mean: 1.0164870131624548
 Std Deviation: 0.9713831502877656
Post-processor distribution of 10240 samples using floor method:
 0: 63.30078125%
 1: 22.98828125%
 2: 8.75%
 3: 3.2421875%
 4: 1.11328125%
 5: 0.390625%
 6: 0.126953125%
 7: 0.05859375%
 8: 0.01953125%
 9: 0.009765625%

Output Analysis: exponential_distribution(1.0)
Typical Timing: 63 ± 1 ns
Statistics of 1024 samples:
 Minimum: 0.0012632597757556792
 Median: (0.6600052912812918, 0.6613695458651184)
 Maximum: 8.233845647085891
 Mean: 1.00610754274133
 Std Deviation: 1.0321380206943058
Post-processor distribution of 10240 samples using floor method:
 0: 63.154296875%
 1: 22.841796875%
 2: 8.681640625%
 3: 3.427734375%
 4: 1.171875%
 5: 0.517578125%
 6: 0.146484375%
 7: 0.029296875%
 8: 0.029296875%

Base Case
Output Analysis: Random.gammavariate(1.0, 1.0)
Typical Timing: 469 ± 10 ns
Statistics of 1024 samples:
 Minimum: 0.00046802738052935226
 Median: (0.6821019599683634, 0.6827638257599115)
 Maximum: 8.239563570307116
 Mean: 0.991191663612758
 Std Deviation: 0.992752118351304
Post-processor distribution of 10240 samples using floor method:
 0: 63.369140625%
 1: 23.203125%
 2: 8.740234375%
 3: 2.939453125%
 4: 1.1328125%
 5: 0.400390625%
 6: 0.15625%
 7: 0.0390625%
 8: 0.009765625%
 9: 0.009765625%

Output Analysis: gamma_distribution(1.0, 1.0)
Typical Timing: 63 ± 6 ns
Statistics of 1024 samples:
 Minimum: 0.0014657259682512246
 Median: (0.6653115966948129, 0.6693656541028595)
 Maximum: 6.991985618991515
 Mean: 0.9709175408169873
 Std Deviation: 0.9725555195269021
Post-processor distribution of 10240 samples using floor method:
 0: 63.466796875%
 1: 22.958984375%
 2: 8.57421875%
 3: 3.134765625%
 4: 1.1328125%
 5: 0.390625%
 6: 0.205078125%
 7: 0.068359375%
 8: 0.01953125%
 9: 0.029296875%
 10: 0.01953125%

Base Case
Output Analysis: Random.weibullvariate(1.0, 1.0)
Typical Timing: 407 ± 11 ns
Statistics of 1024 samples:
 Minimum: 0.00011677270768333428
 Median: (0.7373356281910795, 0.7377742027617761)
 Maximum: 7.273405612985203
 Mean: 1.064728203818245
 Std Deviation: 1.0665548207068112
Post-processor distribution of 10240 samples using floor method:
 0: 62.94921875%
 1: 23.056640625%
 2: 9.31640625%
 3: 2.900390625%
 4: 1.15234375%
 5: 0.44921875%
 6: 0.126953125%
 7: 0.029296875%
 8: 0.009765625%
 11: 0.009765625%

Output Analysis: weibull_distribution(1.0, 1.0)
Typical Timing: 94 ± 13 ns
Statistics of 1024 samples:
 Minimum: 0.0006682281416215072
 Median: (0.7053966592613788, 0.707401558275132)
 Maximum: 8.211701046521249
 Mean: 1.0350358063711198
 Std Deviation: 1.0197082661749663
Post-processor distribution of 10240 samples using floor method:
 0: 63.095703125%
 1: 23.203125%
 2: 8.6328125%
 3: 3.14453125%
 4: 1.240234375%
 5: 0.439453125%
 6: 0.107421875%
 7: 0.068359375%
 8: 0.048828125%
 9: 0.01953125%

Output Analysis: extreme_value_distribution(0.0, 1.0)
Typical Timing: 63 ± 15 ns
Statistics of 1024 samples:
 Minimum: -2.142738811035466
 Median: (0.3387893060810439, 0.348189899753224)
 Maximum: 7.010481564257828
 Mean: 0.5774527960456818
 Std Deviation: 1.273390711607122
Post-processor distribution of 10240 samples using round method:
 -2: 1.220703125%
 -1: 18.0078125%
 0: 34.912109375%
 1: 25.322265625%
 2: 12.470703125%
 3: 5.146484375%
 4: 1.9140625%
 5: 0.64453125%
 6: 0.224609375%
 7: 0.048828125%
 8: 0.05859375%
 9: 0.01953125%
 12: 0.009765625%

Base Case
Output Analysis: Random.gauss(5.0, 2.0)
Typical Timing: 563 ± 14 ns
Statistics of 1024 samples:
 Minimum: -1.2298968640837913
 Median: (4.982157926569959, 4.9846577733225965)
 Maximum: 11.542313250491487
 Mean: 4.967502708296663
 Std Deviation: 2.037834131212798
Post-processor distribution of 10240 samples using round method:
 -3: 0.009765625%
 -2: 0.087890625%
 -1: 0.29296875%
 0: 0.927734375%
 1: 2.8125%
 2: 6.4453125%
 3: 12.275390625%
 4: 17.861328125%
 5: 19.51171875%
 6: 16.93359375%
 7: 12.12890625%
 8: 6.591796875%
 9: 2.91015625%
 10: 0.869140625%
 11: 0.2734375%
 12: 0.05859375%
 13: 0.009765625%

Output Analysis: normal_distribution(5.0, 2.0)
Typical Timing: 94 ± 1 ns
Statistics of 1024 samples:
 Minimum: -1.4148021423712418
 Median: (4.903790226112948, 4.903998305344029)
 Maximum: 10.869894222069515
 Mean: 4.951246964330855
 Std Deviation: 1.989446643495987
Post-processor distribution of 10240 samples using round method:
 -3: 0.01953125%
 -2: 0.01953125%
 -1: 0.263671875%
 0: 0.91796875%
 1: 2.83203125%
 2: 6.181640625%
 3: 12.1875%
 4: 17.71484375%
 5: 19.853515625%
 6: 17.59765625%
 7: 12.001953125%
 8: 6.640625%
 9: 2.685546875%
 10: 0.849609375%
 11: 0.146484375%
 12: 0.05859375%
 13: 0.029296875%

Base Case
Output Analysis: Random.lognormvariate(1.6, 0.25)
Typical Timing: 844 ± 39 ns
Statistics of 1024 samples:
 Minimum: 2.3561313210209667
 Median: (4.93953741589801, 4.948464860488905)
 Maximum: 11.474285902742817
 Mean: 5.153628429350211
 Std Deviation: 1.3755794650586577
Post-processor distribution of 10240 samples using round method:
 2: 0.3515625%
 3: 7.9296875%
 4: 28.056640625%
 5: 30.224609375%
 6: 19.384765625%
 7: 8.90625%
 8: 3.671875%
 9: 1.064453125%
 10: 0.244140625%
 11: 0.126953125%
 12: 0.029296875%
 13: 0.009765625%

Output Analysis: lognormal_distribution(1.6, 0.25)
Typical Timing: 94 ± 14 ns
Statistics of 1024 samples:
 Minimum: 2.3134538372888387
 Median: (4.917271768022827, 4.92402996271686)
 Maximum: 12.636752519553516
 Mean: 5.110846475158034
 Std Deviation: 1.321410077828125
Post-processor distribution of 10240 samples using round method:
 2: 0.29296875%
 3: 7.822265625%
 4: 27.177734375%
 5: 30.966796875%
 6: 19.873046875%
 7: 9.013671875%
 8: 3.203125%
 9: 1.064453125%
 10: 0.390625%
 11: 0.146484375%
 12: 0.0390625%
 13: 0.009765625%

Output Analysis: chi_squared_distribution(1.0)
Typical Timing: 125 ± 12 ns
Statistics of 1024 samples:
 Minimum: 5.306492454827853e-09
 Median: (0.4420680734460275, 0.4441564689040373)
 Maximum: 11.56217687809815
 Mean: 0.9385607357356506
 Std Deviation: 1.3555135542655998
Post-processor distribution of 10240 samples using floor method:
 0: 68.505859375%
 1: 15.810546875%
 2: 7.666015625%
 3: 3.8671875%
 4: 1.69921875%
 5: 1.103515625%
 6: 0.60546875%
 7: 0.341796875%
 8: 0.107421875%
 9: 0.078125%
 10: 0.09765625%
 11: 0.048828125%
 12: 0.0390625%
 13: 0.01953125%
 19: 0.009765625%

Output Analysis: cauchy_distribution(0.0, 1.0)
Typical Timing: 63 ± 14 ns
Statistics of 1024 samples:
 Minimum: -498.4225750298302
 Median: (0.03433738724468461, 0.03670480336452593)
 Maximum: 123.33600380781016
 Mean: -0.6470505521541479
 Std Deviation: 20.104377568004953
Post-processor distribution of 10240 samples using floor_mod_10 method:
 0: 26.181640625%
 1: 11.7578125%
 2: 5.966796875%
 3: 3.798828125%
 4: 3.1640625%
 5: 3.33984375%
 6: 3.828125%
 7: 5.60546875%
 8: 10.830078125%
 9: 25.52734375%

Output Analysis: fisher_f_distribution(8.0, 8.0)
Typical Timing: 188 ± 15 ns
Statistics of 1024 samples:
 Minimum: 0.08633840628109077
 Median: (0.9810512057351255, 0.9846288796461584)
 Maximum: 34.86272012181962
 Mean: 1.3270992950089113
 Std Deviation: 1.5255073733976054
Post-processor distribution of 10240 samples using floor method:
 0: 50.60546875%
 1: 32.40234375%
 2: 10.341796875%
 3: 3.49609375%
 4: 1.54296875%
 5: 0.654296875%
 6: 0.341796875%
 7: 0.146484375%
 8: 0.185546875%
 9: 0.078125%
 10: 0.0390625%
 11: 0.029296875%
 13: 0.029296875%
 14: 0.009765625%
 15: 0.0390625%
 19: 0.009765625%
 24: 0.009765625%
 26: 0.009765625%
 27: 0.009765625%
 31: 0.009765625%
 34: 0.009765625%

Output Analysis: student_t_distribution(8.0)
Typical Timing: 125 ± 14 ns
Statistics of 1024 samples:
 Minimum: -5.648139405585209
 Median: (0.01642851297957229, 0.01764034375545864)
 Maximum: 4.937231407576627
 Mean: 0.0005738579894033376
 Std Deviation: 1.1201097183027962
Post-processor distribution of 10240 samples using round method:
 -6: 0.029296875%
 -5: 0.05859375%
 -4: 0.25390625%
 -3: 1.66015625%
 -2: 6.484375%
 -1: 22.87109375%
 0: 36.357421875%
 1: 23.583984375%
 2: 6.77734375%
 3: 1.591796875%
 4: 0.25390625%
 5: 0.05859375%
 6: 0.009765625%
 7: 0.009765625%


=========================================================================
Total Test Time: 0.5339 seconds

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RNG-1.4.0.tar.gz (101.4 kB view details)

Uploaded Source

Built Distribution

RNG-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl (104.6 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file RNG-1.4.0.tar.gz.

File metadata

  • Download URL: RNG-1.4.0.tar.gz
  • Upload date:
  • Size: 101.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.20.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.3

File hashes

Hashes for RNG-1.4.0.tar.gz
Algorithm Hash digest
SHA256 15c6b6c3237f25439ebed7667b00c84a997c0c9219da9e726abfea4e56fcf4da
MD5 573a7fd38bc55daae4211b3bb15ee3fe
BLAKE2b-256 1adc9c0210cd1b24d4e3ccecd745321934ff5f899b8a10a208eb5ed5bf2fc971

See more details on using hashes here.

File details

Details for the file RNG-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: RNG-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 104.6 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.20.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.27.0 CPython/3.7.3

File hashes

Hashes for RNG-1.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1790183e71c6c0f0845f01deea11d0d65fe0d54e51103102c9d780a37cf4e05d
MD5 631d1cb2364c691cf515e73d8c94fdbc
BLAKE2b-256 3b968427e7f1a2610266519f3754af97d50147fce1ab5a12df4b43acc3626477

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page