Skip to main content

Python3 API for the C++ Random Library

Project description

Random Number Generator & Engine for Python3

  • Compiled Python3 API for the C++ Random Library.
  • Designed for python developers familiar with C++ random library.
  • Warning: RNG is not suitable for cryptography or secure hashing.

Quick Install $ pip install RNG

Installation may require the following:

  • Python 3.6 or later with dev tools (setuptools, pip, etc.)
  • Cython: Bridge from C/C++ to Python.
  • Modern C++17 Compiler and Standard Library.

Sister Projects:


RNG Specifications

Random Boolean

  • RNG.bernoulli_variate(ratio_of_truth: float) -> bool
    • Produces a Bernoulli distribution of boolean values.
    • @param ratio_of_truth :: the probability of True. Expected input range: [0.0, 1.0], clamped.
    • @return :: True or False

Random Integer

  • RNG.uniform_int_variate(left_limit: int, right_limit: int) -> int
    • Flat uniform distribution.
    • @param left_limit :: input A.
    • @param right_limit :: input B.
    • @return :: random integer in the inclusive range [A, B] or [B, A] if B < A
  • RNG.binomial_variate(number_of_trials: int, probability: float) -> int
    • Based on the idea of flipping a coin and counting how many heads come up after some number of flips.
    • @param number_of_trials :: how many times to flip a coin.
    • @param probability :: how likely heads will be flipped. 0.5 is a fair coin. 1.0 is a double headed coin.
    • @return :: count of how many heads came up.
  • RNG.negative_binomial_variate(trial_successes: int, probability: float) -> int
    • Based on the idea of flipping a coin as long as it takes to succeed.
    • @param trial_successes :: the required number of heads flipped to succeed.
    • @param probability :: how likely heads will be flipped. 0.50 is a fair coin.
    • @return :: the count of how many tails came up before the required number of heads.
  • RNG.geometric_variate(probability: float) -> int
    • Same as random_negative_binomial(1, probability).
  • RNG.poisson_variate(mean: float) -> int
    • @param mean :: sets the average output of the function.
    • @return :: random integer, poisson distribution centered on the mean.

Random Floating Point

  • RNG.generate_canonical() -> float
    • Evenly distributes floats of maximum precision.
    • @return :: random float in range (0.0, 1.0)
  • RNG.uniform_real_variate(left_limit: float, right_limit: float) -> float
    • Flat uniform distribution of floats.
    • @return :: random Float between left_limit and right_limit.
  • RNG.normal_variate(mean: float, std_dev: float) -> float
    • @param mean :: sets the average output of the function.
    • @param std_dev :: standard deviation. Specifies spread of data from the mean.
  • RNG.lognormal_variate(log_mean: float, log_deviation: float) -> float
    • @param log_mean :: sets the log of the mean of the function.
    • @param log_deviation :: log of the standard deviation. Specifies spread of data from the mean.
  • RNG.exponential_variate(lambda_rate: float) -> float
    • Produces random non-negative floating-point values, distributed according to probability density function.
    • @param lambda_rate :: λ constant rate of a random event per unit of time/distance.
    • @return :: The time/distance until the next random event. For example, this distribution describes the time between the clicks of a Geiger counter or the distance between point mutations in a DNA strand.
  • RNG.gamma_variate(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Produces random positive floating-point values, distributed according to probability density function.
    • @param shape :: α the number of independent exponentially distributed random variables.
    • @param scale :: β the scale factor or the mean of each of the distributed random variables.
    • @return :: the sum of α independent exponentially distributed random variables, each of which has a mean of β.
  • RNG.weibull_variate(shape: float, scale: float) -> float
    • Generalization of the exponential distribution.
    • Similar to the gamma distribution but uses a closed form distribution function.
    • Popular in reliability and survival analysis.
  • RNG.extreme_value_variate(location: float, scale: float) -> float
    • Based on Extreme Value Theory.
    • Used for statistical models of the magnitude of earthquakes and volcanoes.
  • RNG.chi_squared_variate(degrees_of_freedom: float) -> float
    • Used with the Chi Squared Test and Null Hypotheses to test if sample data fits an expected distribution.
  • RNG.cauchy_variate(location: float, scale: float) -> float
    • @param location :: It specifies the location of the peak. The default value is 0.0.
    • @param scale :: It represents the half-width at half-maximum. The default value is 1.0.
    • @return :: Continuous Distribution.
  • RNG.fisher_f_variate(degrees_of_freedom_1: float, degrees_of_freedom_2: float) -> float
    • F distributions often arise when comparing ratios of variances.
  • RNG.student_t_variate(degrees_of_freedom: float) -> float
    • T distribution. Same as a normal distribution except it uses the sample standard deviation rather than the population standard deviation.
    • As degrees_of_freedom goes to infinity it converges with the normal distribution.
  • RNG.beta_variate(alpha: float, beta: float) -> float
  • RNG.pareto_variate(alpha: float) -> float
  • RNG.vonmises_variate(mu: float, kappa: float) -> float
  • RNG.triangular_variate(low: float, high: float, mode: float = None)

Development Log

RNG 1.9.0
  • Storm Multithreading Update
RNG 1.8.0
  • Installer update
  • Storm 3.3.4 update
  • Adds four new functions:
    • beta_variate
    • pareto_variate
    • vonmises_variate
    • triangular_variate
RNG 1.7.3
  • Documentation Update
RNG 1.7.2
  • Adds four new functions:
    • beta_variate
    • pareto_variate
    • vonmises_variate
    • triangular_variate
RNG 1.7.1
  • Fixes Major Bug in 1.7.0
RNG 1.7.0
  • Storm 3.3.3 update
RNG 1.6.7
  • Installer Update to address installation on Linux.
RNG 1.6.6
  • Documentation Update
RNG 1.6.5
  • Fixed Typos
RNG 1.6.4
  • Installer update.
RNG 1.6.3
  • More minor typos fixed.
RNG 1.6.2
  • Minor typos fixed.
RNG 1.6.1
  • Storm 3.2.2 Update.
RNG 1.6.0
  • RNG is now compatible with python notebooks.
RNG 1.5.5
  • Storm Update
RNG 1.5.4
  • Storm 3.2 Update
RNG 1.5.3
  • Fixed Typos
RNG 1.5.2
  • Compiler Config Update
RNG 1.5.1
  • A number of testing routines have been extracted into a new module: MonkeyScope.
    • distribution
    • timer
    • distribution_timer
RNG 1.5.0, internal
  • Further API Refinements, new naming convention for variate generators: <algorithm name>_variate
RNG 1.4.2
  • Install script update
  • Test tweaks for noise reduction in timing tests.
RNG 1.4.1
  • Test Patch for new API
  • Documentation Updates
RNG 1.4.0
  • API Refactoring
RNG 1.3.4
  • Storm Update 3.1.1
RNG 1.3.3
  • Installer script update
RNG 1.3.2
  • Minor Bug Fix
RNG 1.3.1
  • Test Update
RNG 1.3.1
  • Fixed Typos
RNG 1.3.0
  • Storm Update
RNG 1.2.5
  • Low level clean up
RNG 1.2.4
  • Minor Typos Fixed
RNG 1.2.3
  • Documentation Update
  • Test Update
  • Bug Fixes
RNG 1.0.0 - 1.2.2, internal
  • API Changes:
    • randint changed to random_int
    • randbelow changed to random_below
    • random changed to generate_canonical
    • uniform changed to random_float
RNG 0.2.3
  • Bug Fixes
RNG 0.2.2
  • discrete() removed.
RNG 0.2.1
  • minor typos
  • discrete() depreciated.
RNG 0.2.0
  • Major Rebuild.
RNG 0.1.22
  • The RNG Storm Engine is now the default standard.
  • Experimental Vortex Engine added for testing.
RNG 0.1.21 beta
  • Small update to the testing suite.
RNG 0.1.20 beta
  • Changed default inputs for random_int and random_below to sane values.
    • random_int(left_limit=1, right_limit=20) down from -2**63, 2**63 - 1
    • random_below(upper_bound=10) down from 2**63 - 1
RNG 0.1.19 beta
  • Broke some fixed typos, for a change of pace.
RNG 0.1.18 beta
  • Fixed some typos.
RNG 0.1.17 beta
  • Major Refactoring.
  • New primary engine: Hurricane.
  • Experimental engine Typhoon added: random_below() only.
RNG 0.1.16 beta
  • Internal Engine Performance Tuning.
RNG 0.1.15 beta
  • Engine Testing.
RNG 0.1.14 beta
  • Fixed a few typos.
RNG 0.1.13 beta
  • Fixed a few typos.
RNG 0.1.12 beta
  • Major Test Suite Upgrade.
  • Major Bug Fixes.
    • Removed several 'foot-guns' in prep for fuzz testing in future releases.
RNG 0.1.11 beta
  • Fixed small bug in the install script.
RNG 0.1.10 beta
  • Fixed some typos.
RNG 0.1.9 beta
  • Fixed some typos.
RNG 0.1.8 beta
  • Fixed some typos.
  • More documentation added.
RNG 0.1.7 beta
  • The random_floating_point function renamed to random_float.
  • The function c_rand() has been removed as well as all the cruft it required.
  • Major Documentation Upgrade.
  • Fixed an issue where keyword arguments would fail to propagate. Both, positional args and kwargs now work as intended.
  • Added this Dev Log.
RNG 0.0.6 alpha
  • Minor ABI changes.
RNG 0.0.5 alpha
  • Tests redesigned slightly for Float functions.
RNG 0.0.4 alpha
  • Random Float Functions Implemented.
RNG 0.0.3 alpha
  • Random Integer Functions Implemented.
RNG 0.0.2 alpha
  • Random Bool Function Implemented.
RNG 0.0.1 pre-alpha
  • Planning & Design.

MonkeyScope: Distribution and Performance Test Suite

MonkeyScope: RNG Tests
=========================================================================

Boolean Variate Distributions

Output Analysis: bernoulli_variate(0.0)
Typical Timing: 45 ± 6 ns
Statistics of 1000 samples:
 Minimum: False
 Median: False
 Maximum: False
 Mean: 0
 Std Deviation: 0.0
Distribution of 10000 samples:
 False: 100.0%

Output Analysis: bernoulli_variate(0.3333333333333333)
Typical Timing: 50 ± 3 ns
Statistics of 1000 samples:
 Minimum: False
 Median: False
 Maximum: True
 Mean: 0.351
 Std Deviation: 0.4775217555536366
Distribution of 10000 samples:
 False: 66.83%
 True: 33.17%

Output Analysis: bernoulli_variate(0.5)
Typical Timing: 48 ± 1 ns
Statistics of 1000 samples:
 Minimum: False
 Median: True
 Maximum: True
 Mean: 0.517
 Std Deviation: 0.49996095943679536
Distribution of 10000 samples:
 False: 50.19%
 True: 49.81%

Output Analysis: bernoulli_variate(0.6666666666666666)
Typical Timing: 53 ± 6 ns
Statistics of 1000 samples:
 Minimum: False
 Median: True
 Maximum: True
 Mean: 0.68
 Std Deviation: 0.46670956473787617
Distribution of 10000 samples:
 False: 33.29%
 True: 66.71%

Output Analysis: bernoulli_variate(1.0)
Typical Timing: 40 ± 1 ns
Statistics of 1000 samples:
 Minimum: True
 Median: True
 Maximum: True
 Mean: 1
 Std Deviation: 0.0
Distribution of 10000 samples:
 True: 100.0%


Integer Variate Distributions

Base Case
Output Analysis: Random.randint(1, 6)
Typical Timing: 701 ± 57 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 3
 Maximum: 6
 Mean: 3.495
 Std Deviation: 1.6759426552790473
Distribution of 10000 samples:
 1: 16.99%
 2: 16.18%
 3: 16.57%
 4: 17.17%
 5: 16.06%
 6: 17.03%

Output Analysis: uniform_int_variate(1, 6)
Typical Timing: 69 ± 18 ns
Statistics of 1000 samples:
 Minimum: 1
 Median: 4
 Maximum: 6
 Mean: 3.513
 Std Deviation: 1.6990343485985555
Distribution of 10000 samples:
 1: 16.64%
 2: 16.85%
 3: 16.36%
 4: 16.84%
 5: 16.72%
 6: 16.59%

Output Analysis: binomial_variate(4, 0.5)
Typical Timing: 116 ± 6 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 2
 Maximum: 4
 Mean: 2.006
 Std Deviation: 1.0212771450527065
Distribution of 10000 samples:
 0: 6.26%
 1: 24.47%
 2: 37.96%
 3: 24.91%
 4: 6.4%

Output Analysis: negative_binomial_variate(5, 0.75)
Typical Timing: 99 ± 2 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 1
 Maximum: 9
 Mean: 1.669
 Std Deviation: 1.4316034676154177
Distribution of 10000 samples:
 0: 23.39%
 1: 30.02%
 2: 22.28%
 3: 12.65%
 4: 6.6%
 5: 3.15%
 6: 1.17%
 7: 0.53%
 8: 0.15%
 9: 0.06%

Output Analysis: geometric_variate(0.75)
Typical Timing: 54 ± 11 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 0
 Maximum: 5
 Mean: 0.329
 Std Deviation: 0.6520614880394212
Distribution of 10000 samples:
 0: 75.71%
 1: 18.24%
 2: 4.71%
 3: 0.99%
 4: 0.27%
 5: 0.05%
 6: 0.03%

Output Analysis: poisson_variate(4.5)
Typical Timing: 105 ± 11 ns
Statistics of 1000 samples:
 Minimum: 0
 Median: 4
 Maximum: 13
 Mean: 4.471
 Std Deviation: 2.2293786419379567
Distribution of 10000 samples:
 0: 1.13%
 1: 5.34%
 2: 11.08%
 3: 16.88%
 4: 19.05%
 5: 17.4%
 6: 12.75%
 7: 8.08%
 8: 4.61%
 9: 2.11%
 10: 0.92%
 11: 0.43%
 12: 0.14%
 13: 0.07%
 17: 0.01%


Floating Point Variate Distributions

Base Case
Output Analysis: Random.random()
Typical Timing: 33 ± 2 ns
Statistics of 1000 samples:
 Minimum: 0.0009469086960408601
 Median: (0.4860176675184945, 0.4862191254411504)
 Maximum: 0.9997461211625814
 Mean: 0.49159326560197075
 Std Deviation: 0.2850094459134645
Post-processor distribution of 10000 samples using round method:
 0: 49.97%
 1: 50.03%

Output Analysis: generate_canonical()
Typical Timing: 49 ± 14 ns
Statistics of 1000 samples:
 Minimum: 0.0012250580801643602
 Median: (0.49940149724119814, 0.5012480240473031)
 Maximum: 0.9995110419296278
 Mean: 0.4990862906881559
 Std Deviation: 0.2894336096594379
Post-processor distribution of 10000 samples using round method:
 0: 49.79%
 1: 50.21%

Base Case
Output Analysis: Random.uniform(0.0, 10.0)
Typical Timing: 202 ± 30 ns
Statistics of 1000 samples:
 Minimum: 0.0009063003136644543
 Median: (5.104390717900893, 5.112896064974317)
 Maximum: 9.969346101796932
 Mean: 5.087947391421488
 Std Deviation: 2.858752303711666
Post-processor distribution of 10000 samples using floor method:
 0: 9.94%
 1: 10.18%
 2: 10.15%
 3: 9.53%
 4: 10.12%
 5: 9.67%
 6: 9.89%
 7: 10.09%
 8: 10.03%
 9: 10.4%

Output Analysis: uniform_real_variate(0.0, 10.0)
Typical Timing: 36 ± 1 ns
Statistics of 1000 samples:
 Minimum: 0.009369504108719947
 Median: (5.231715984229183, 5.238221356483351)
 Maximum: 9.993081008562841
 Mean: 5.121535589837096
 Std Deviation: 2.928017584780168
Post-processor distribution of 10000 samples using floor method:
 0: 10.24%
 1: 9.96%
 2: 9.85%
 3: 10.08%
 4: 9.91%
 5: 10.14%
 6: 9.86%
 7: 10.01%
 8: 9.76%
 9: 10.19%

Base Case
Output Analysis: Random.expovariate(1.0)
Typical Timing: 308 ± 54 ns
Statistics of 1000 samples:
 Minimum: 0.00022283579144723265
 Median: (0.6946018847083439, 0.7033952301957903)
 Maximum: 9.377129964767672
 Mean: 0.9888233042561453
 Std Deviation: 0.9909547143969067
Post-processor distribution of 10000 samples using floor method:
 0: 63.41%
 1: 23.05%
 2: 8.67%
 3: 3.16%
 4: 1.05%
 5: 0.43%
 6: 0.11%
 7: 0.05%
 8: 0.03%
 9: 0.03%
 10: 0.01%

Output Analysis: exponential_variate(1.0)
Typical Timing: 70 ± 19 ns
Statistics of 1000 samples:
 Minimum: 0.00036922135460148444
 Median: (0.6902301261789581, 0.690992414050738)
 Maximum: 7.784693626624327
 Mean: 1.0307886115084801
 Std Deviation: 1.0504520936815291
Post-processor distribution of 10000 samples using floor method:
 0: 62.7%
 1: 23.08%
 2: 9.02%
 3: 3.26%
 4: 1.15%
 5: 0.47%
 6: 0.2%
 7: 0.1%
 8: 0.02%

Base Case
Output Analysis: Random.gammavariate(1.0, 1.0)
Typical Timing: 381 ± 14 ns
Statistics of 1000 samples:
 Minimum: 0.0018991954906568038
 Median: (0.7245665689711348, 0.724807613270215)
 Maximum: 5.976644443321298
 Mean: 0.9933357953854692
 Std Deviation: 0.9497445555967294
Post-processor distribution of 10000 samples using floor method:
 0: 63.7%
 1: 23.23%
 2: 8.39%
 3: 2.97%
 4: 1.23%
 5: 0.35%
 6: 0.07%
 7: 0.04%
 9: 0.01%
 10: 0.01%

Output Analysis: gamma_variate(1.0, 1.0)
Typical Timing: 63 ± 4 ns
Statistics of 1000 samples:
 Minimum: 0.0018232827565116735
 Median: (0.7491531342325481, 0.7492698602338012)
 Maximum: 6.786310986657975
 Mean: 1.0545029123837208
 Std Deviation: 1.0409898067584733
Post-processor distribution of 10000 samples using floor method:
 0: 62.69%
 1: 23.84%
 2: 8.5%
 3: 3.15%
 4: 1.2%
 5: 0.41%
 6: 0.13%
 7: 0.02%
 8: 0.04%
 9: 0.01%
 10: 0.01%

Base Case
Output Analysis: Random.weibullvariate(1.0, 1.0)
Typical Timing: 375 ± 55 ns
Statistics of 1000 samples:
 Minimum: 7.520225396221629e-05
 Median: (0.674584553290744, 0.6751023933237315)
 Maximum: 8.547669414265268
 Mean: 0.9697432909503267
 Std Deviation: 0.9878268042292196
Post-processor distribution of 10000 samples using floor method:
 0: 63.33%
 1: 23.45%
 2: 8.16%
 3: 3.17%
 4: 1.08%
 5: 0.46%
 6: 0.22%
 7: 0.07%
 8: 0.04%
 9: 0.01%
 10: 0.01%

Output Analysis: weibull_variate(1.0, 1.0)
Typical Timing: 97 ± 19 ns
Statistics of 1000 samples:
 Minimum: 0.00012212664058456425
 Median: (0.7508676497298515, 0.7511662479880115)
 Maximum: 10.168551250795032
 Mean: 1.0484087501169248
 Std Deviation: 1.0528035703606708
Post-processor distribution of 10000 samples using floor method:
 0: 63.47%
 1: 23.11%
 2: 8.26%
 3: 3.39%
 4: 1.08%
 5: 0.44%
 6: 0.14%
 7: 0.04%
 8: 0.05%
 9: 0.01%
 10: 0.01%

Output Analysis: extreme_value_variate(0.0, 1.0)
Typical Timing: 64 ± 1 ns
Statistics of 1000 samples:
 Minimum: -2.1523974238627286
 Median: (0.36819057686823914, 0.3716427752373583)
 Maximum: 6.981328878514542
 Mean: 0.586266384911579
 Std Deviation: 1.2984970649397378
Post-processor distribution of 10000 samples using round method:
 -3: 0.01%
 -2: 1.05%
 -1: 18.18%
 0: 34.93%
 1: 26.04%
 2: 12.43%
 3: 4.6%
 4: 1.76%
 5: 0.52%
 6: 0.35%
 7: 0.11%
 8: 0.01%
 9: 0.01%

Base Case
Output Analysis: Random.gauss(5.0, 2.0)
Typical Timing: 510 ± 38 ns
Statistics of 1000 samples:
 Minimum: -0.7477171265545861
 Median: (4.888618373902524, 4.891850499176082)
 Maximum: 10.91278503342475
 Mean: 4.897247795072598
 Std Deviation: 1.9904131599973038
Post-processor distribution of 10000 samples using round method:
 -4: 0.01%
 -3: 0.02%
 -2: 0.07%
 -1: 0.24%
 0: 1.05%
 1: 2.82%
 2: 7.11%
 3: 12.22%
 4: 17.0%
 5: 19.78%
 6: 17.55%
 7: 12.19%
 8: 6.31%
 9: 2.57%
 10: 0.85%
 11: 0.15%
 12: 0.03%
 13: 0.02%
 14: 0.01%

Output Analysis: normal_variate(5.0, 2.0)
Typical Timing: 99 ± 21 ns
Statistics of 1000 samples:
 Minimum: -1.7354688571967598
 Median: (4.975708463134088, 4.979575294576254)
 Maximum: 10.85380115408761
 Mean: 4.900369847149426
 Std Deviation: 1.977127518275325
Post-processor distribution of 10000 samples using round method:
 -3: 0.01%
 -2: 0.03%
 -1: 0.28%
 0: 1.1%
 1: 2.7%
 2: 6.24%
 3: 12.47%
 4: 17.12%
 5: 19.73%
 6: 17.33%
 7: 12.33%
 8: 6.52%
 9: 2.87%
 10: 0.9%
 11: 0.31%
 12: 0.06%

Base Case
Output Analysis: Random.lognormvariate(1.6, 0.25)
Typical Timing: 739 ± 91 ns
Statistics of 1000 samples:
 Minimum: 1.6182109355042633
 Median: (4.954760466608597, 4.9549928980551465)
 Maximum: 10.382790739453425
 Mean: 5.072340877054277
 Std Deviation: 1.2876444585825677
Post-processor distribution of 10000 samples using round method:
 1: 0.01%
 2: 0.27%
 3: 8.32%
 4: 27.04%
 5: 30.37%
 6: 20.05%
 7: 9.17%
 8: 3.42%
 9: 1.0%
 10: 0.22%
 11: 0.07%
 12: 0.02%
 13: 0.02%
 14: 0.02%

Output Analysis: lognormal_variate(1.6, 0.25)
Typical Timing: 91 ± 2 ns
Statistics of 1000 samples:
 Minimum: 2.054519803989211
 Median: (4.961175413324585, 4.962346412418926)
 Maximum: 13.089948639610624
 Mean: 5.133865982000209
 Std Deviation: 1.3471587667449132
Post-processor distribution of 10000 samples using round method:
 2: 0.54%
 3: 7.87%
 4: 27.03%
 5: 30.88%
 6: 20.13%
 7: 8.85%
 8: 3.13%
 9: 1.08%
 10: 0.36%
 11: 0.06%
 12: 0.06%
 13: 0.01%

Output Analysis: chi_squared_variate(1.0)
Typical Timing: 99 ± 2 ns
Statistics of 1000 samples:
 Minimum: 1.0941210891363413e-05
 Median: (0.43469342598840177, 0.4379878305872364)
 Maximum: 12.686947158426655
 Mean: 1.0043828014250444
 Std Deviation: 1.4523692968032893
Post-processor distribution of 10000 samples using floor method:
 0: 68.62%
 1: 16.19%
 2: 7.22%
 3: 3.47%
 4: 1.78%
 5: 1.2%
 6: 0.54%
 7: 0.41%
 8: 0.24%
 9: 0.13%
 10: 0.1%
 11: 0.07%
 12: 0.03%

Output Analysis: cauchy_variate(0.0, 1.0)
Typical Timing: 74 ± 8 ns
Statistics of 1000 samples:
 Minimum: -412.4447039329294
 Median: (-0.00803996345876897, -0.007045265870693908)
 Maximum: 100.05630557155071
 Mean: -0.7570829535044235
 Std Deviation: 16.84763686555999
Post-processor distribution of 10000 samples using floor_mod_10 method:
 0: 26.16%
 1: 10.85%
 2: 6.06%
 3: 3.99%
 4: 2.99%
 5: 3.15%
 6: 3.68%
 7: 6.01%
 8: 10.88%
 9: 26.23%

Output Analysis: fisher_f_variate(8.0, 8.0)
Typical Timing: 171 ± 19 ns
Statistics of 1000 samples:
 Minimum: 0.07778050584372528
 Median: (1.0057729865228902, 1.008538415914723)
 Maximum: 9.360113645215508
 Mean: 1.327148184999924
 Std Deviation: 1.1367248833797432
Post-processor distribution of 10000 samples using floor method:
 0: 50.31%
 1: 32.35%
 2: 10.4%
 3: 3.42%
 4: 1.52%
 5: 0.83%
 6: 0.49%
 7: 0.21%
 8: 0.17%
 9: 0.14%
 10: 0.01%
 11: 0.04%
 12: 0.04%
 13: 0.01%
 14: 0.01%
 15: 0.01%
 16: 0.01%
 17: 0.01%
 19: 0.01%
 20: 0.01%

Output Analysis: student_t_variate(8.0)
Typical Timing: 135 ± 2 ns
Statistics of 1000 samples:
 Minimum: -4.347277120767142
 Median: (-0.09684763137542615, -0.09577555353044116)
 Maximum: 4.761006911099672
 Mean: -0.10896142938152968
 Std Deviation: 1.1174742914446785
Post-processor distribution of 10000 samples using round method:
 -6: 0.01%
 -5: 0.04%
 -4: 0.35%
 -3: 1.48%
 -2: 6.81%
 -1: 22.37%
 0: 37.7%
 1: 22.81%
 2: 6.9%
 3: 1.22%
 4: 0.2%
 5: 0.08%
 6: 0.01%
 7: 0.01%
 12: 0.01%

Base Case
Output Analysis: Random.betavariate(3.0, 3.0)
Typical Timing: 2073 ± 139 ns
Statistics of 1000 samples:
 Minimum: 0.03138760912076865
 Median: (0.5068211737017677, 0.5092176475719613)
 Maximum: 0.9546118898169257
 Mean: 0.5028550656967483
 Std Deviation: 0.18788179763987925
Post-processor distribution of 10000 samples using round method:
 0: 49.39%
 1: 50.61%

Output Analysis: beta_variate(3.0, 3.0)
Typical Timing: 194 ± 38 ns
Statistics of 1000 samples:
 Minimum: 0.032943252168093094
 Median: (0.5050489272860383, 0.5054503804757835)
 Maximum: 0.9880206999844106
 Mean: 0.49666850251973654
 Std Deviation: 0.19050360553549944
Post-processor distribution of 10000 samples using round method:
 0: 49.93%
 1: 50.07%

Base Case
Output Analysis: Random.paretovariate(4.0)
Typical Timing: 258 ± 43 ns
Statistics of 1000 samples:
 Minimum: 1.0000730550843022
 Median: (1.190790537931246, 1.1910309529817935)
 Maximum: 7.229789936432111
 Mean: 1.3429097432265165
 Std Deviation: 0.49712093056422557
Post-processor distribution of 10000 samples using floor method:
 1: 93.85%
 2: 4.9%
 3: 0.75%
 4: 0.36%
 5: 0.06%
 6: 0.03%
 7: 0.01%
 8: 0.01%
 9: 0.01%
 10: 0.01%
 11: 0.01%

Output Analysis: pareto_variate(4.0)
Typical Timing: 72 ± 1 ns
Statistics of 1000 samples:
 Minimum: 1.0000557435294104
 Median: (1.2061623131691928, 1.2063019523964296)
 Maximum: 5.614244166389306
 Mean: 1.3186057582094874
 Std Deviation: 0.3953237528416675
Post-processor distribution of 10000 samples using floor method:
 1: 93.81%
 2: 4.98%
 3: 0.84%
 4: 0.21%
 5: 0.06%
 6: 0.05%
 7: 0.02%
 8: 0.01%
 10: 0.01%
 15: 0.01%

Base Case
Output Analysis: Random.vonmisesvariate(0, 0)
Typical Timing: 213 ± 21 ns
Statistics of 1000 samples:
 Minimum: 0.003293176650527809
 Median: (3.161168648355572, 3.161293649410021)
 Maximum: 6.282873757855562
 Mean: 3.1742415713839893
 Std Deviation: 1.8234656882324494
Post-processor distribution of 10000 samples using floor method:
 0: 15.79%
 1: 16.15%
 2: 15.99%
 3: 15.68%
 4: 15.93%
 5: 15.88%
 6: 4.58%

Output Analysis: vonmises_variate(0, 0)
Typical Timing: 78 ± 16 ns
Statistics of 1000 samples:
 Minimum: 0.0019580074347335377
 Median: (3.269692944691527, 3.2778954505492233)
 Maximum: 6.27533475156213
 Mean: 3.1958649424197687
 Std Deviation: 1.817883257675407
Post-processor distribution of 10000 samples using floor method:
 0: 16.09%
 1: 15.91%
 2: 16.23%
 3: 15.53%
 4: 16.13%
 5: 15.51%
 6: 4.6%

Base Case
Output Analysis: Random.triangular(0.0, 10.0, 0.0)
Typical Timing: 432 ± 65 ns
Statistics of 1000 samples:
 Minimum: 0.00044729631290252314
 Median: (2.9227727784626545, 2.9250450899909666)
 Maximum: 9.719266426712398
 Mean: 3.382494401771918
 Std Deviation: 2.432128735482754
Post-processor distribution of 10000 samples using floor method:
 0: 19.41%
 1: 16.81%
 2: 14.99%
 3: 13.06%
 4: 11.16%
 5: 8.96%
 6: 6.53%
 7: 4.96%
 8: 3.07%
 9: 1.05%

Output Analysis: triangular_variate(0.0, 10.0, 0.0)
Typical Timing: 52 ± 9 ns
Statistics of 1000 samples:
 Minimum: 0.005402718449564858
 Median: (2.975522778312768, 2.978287303484085)
 Maximum: 9.537942606667837
 Mean: 3.3170707949104434
 Std Deviation: 2.34454588898292
Post-processor distribution of 10000 samples using floor method:
 0: 19.36%
 1: 16.84%
 2: 14.97%
 3: 12.33%
 4: 10.79%
 5: 8.89%
 6: 7.23%
 7: 5.4%
 8: 3.22%
 9: 0.97%


=========================================================================
Total Test Time: 0.8547 seconds

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RNG-1.9.0.tar.gz (64.3 kB view details)

Uploaded Source

Built Distribution

RNG-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl (48.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file RNG-1.9.0.tar.gz.

File metadata

  • Download URL: RNG-1.9.0.tar.gz
  • Upload date:
  • Size: 64.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for RNG-1.9.0.tar.gz
Algorithm Hash digest
SHA256 db36fb0a4968a69a5804c4b13a57dd28a814ecca7ba62945d37e835b5b27fcc7
MD5 7cd0cfe6a7c65a4da1413cc949c1e9e7
BLAKE2b-256 dfcaecc4c228e157032d5b2866a31b7394d5b2669b0a0a058b4e248ff6b770fa

See more details on using hashes here.

File details

Details for the file RNG-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: RNG-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 48.9 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.0.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for RNG-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 042c40f3d65966c5b62d0cc591a520d6ee6162bc4ecb5025ecceed714b3df6ad
MD5 3b5d0fa8643a65c94129a69ab3117220
BLAKE2b-256 1fb5e87ca2b619dfd0d7fc231cc6b2a8028438d7316300c2c3e53c4de950954f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page