Skip to main content

Python wrapper for IBM RXN for Chemistry

Project description

Python wrapper for the IBM RXN for Chemistry API

Actions tests PyPI version License: MIT Binder

logo

A python wrapper to access the API of the IBM RXN for Chemistry website.

Install

From PYPI:

pip install rxn4chemistry

Or directly from the repo:

pip install git+https://github.com/rxn4chemistry/rxn4chemistry.git

Usage

By default, the wrapper connects to the https://rxn.res.ibm.com server. This can be overriden by setting an environment variable. To set a different url, simply do:

export RXN4CHEMISTRY_BASE_URL="https://some.other.rxn.server"

The base url can be directly set when instantiating the RXN4ChemistryWrapper (this will overwrite the environment variable):

api_key = 'API_KEY'
from rxn4chemistry import RXN4ChemistryWrapper

rxn4chemistry_wrapper = RXN4ChemistryWrapper(api_key=api_key, base_url='https://some.other.rxn.server')
# or set it afterwards
# rxn4chemistry_wrapper = RXN4ChemistryWrapper(api_key=api_key)
# rxn4chemistry_wrapper.set_base_url('https://some.other.rxn.server')

Create a project

Get your API key from here and build the wrapper:

api_key = 'API_KEY'
from rxn4chemistry import RXN4ChemistryWrapper

rxn4chemistry_wrapper = RXN4ChemistryWrapper(api_key=api_key)
# NOTE: you can create a project or set an esiting one using:
# rxn4chemistry_wrapper.set_project('PROJECT_ID')
rxn4chemistry_wrapper.create_project('test_wrapper')
print(rxn4chemistry_wrapper.project_id)

Reaction outcome prediction

Running a reaction outcome prediction is as simple as:

response = rxn4chemistry_wrapper.predict_reaction(
    'BrBr.c1ccc2cc3ccccc3cc2c1'
)
results = rxn4chemistry_wrapper.get_predict_reaction_results(
    response['prediction_id']
)
print(results['response']['payload']['attempts'][0]['smiles'])

Extracting actions from a paragraph describing a recipe

Extract the actions from a recipe:

results = rxn4chemistry_wrapper.paragraph_to_actions(
    'To a stirred solution of '
    '7-(difluoromethylsulfonyl)-4-fluoro-indan-1-one (110 mg, '
    '0.42 mmol) in methanol (4 mL) was added sodium borohydride '
    '(24 mg, 0.62 mmol). The reaction mixture was stirred at '
    'ambient temperature for 1 hour.'
)
print(results['actions'])

Retrosynthesis prediction

Predict a retrosynthetic pathway given a product:

response = rxn4chemistry_wrapper.predict_automatic_retrosynthesis(
    'Brc1c2ccccc2c(Br)c2ccccc12'
)
results = rxn4chemistry_wrapper.get_predict_automatic_retrosynthesis_results(
    response['prediction_id']
)
print(results['status'])
# NOTE: upon 'SUCCESS' you can inspect the predicted retrosynthetic paths.
print(results['retrosynthetic_paths'][0])

See here for a more comprehensive example.

Biocatalysed retrosynthesis prediction

Predict a biocatalysed retrosynthetic pathway given a product by specifying the model trained on biocatalysed reactions:

response = rxn4chemistry_wrapper.predict_automatic_retrosynthesis(
    'OC1C(O)C=C(Br)C=C1', ai_model='enzymatic-2021-04-16'
)
results = rxn4chemistry_wrapper.get_predict_automatic_retrosynthesis_results(
    response['prediction_id']
)
print(results['status'])
# NOTE: upon 'SUCCESS' you can inspect the predicted retrosynthetic paths.
print(results['retrosynthetic_paths'][0])

Prediction of reaction properties (atom-to-atom mapping, reaction yield, ...)

Prediction of atom-to-atom mapping (see paper):

response = rxn4chemistry_wrapper.predict_reaction_properties(
    reactions=[
        "CC(C)S.CN(C)C=O.Fc1cccnc1F.O=C([O-])[O-].[K+].[K+]>>CC(C)Sc1ncccc1F",
        "C1COCCO1.CC(C)(C)OC(=O)CONC(=O)NCc1cccc2ccccc12.Cl>>O=C(O)CONC(=O)NCc1cccc2ccccc12",
        "C=CCN=C=S.CNCc1ccc(C#N)cc1.NNC(=O)c1cn2c(n1)CCCC2>>C=CCN1C(C2=CN3CCCCC3=N2)=NN=C1N(C)CC1=CC=C(C#N)C=C1",
    ],
    ai_model="atom-mapping-2020",
)
for predicted_mapping_dict in response["response"]["payload"]["content"]:
    print(predicted_mapping_dict["value"])

Prediction of reaction yields (see paper):

response = rxn4chemistry_wrapper.predict_reaction_properties(
    reactions=[
        "Clc1ccccn1.Cc1ccc(N)cc1.O=S(=O)(O[Pd]1c2ccccc2-c2ccccc2N~1)C(F)(F)F.COc1ccc(OC)c(P([C@]23C[C@H]4C[C@H](C[C@H](C4)C2)C3)[C@]23C[C@H]4C[C@H](C[C@H](C4)C2)C3)c1-c1c(C(C)C)cc(C(C)C)cc1C(C)C.CCN=P(N=P(N(C)C)(N(C)C)N(C)C)(N(C)C)N(C)C.Cc1cc(C)on1>>Cc1ccc(Nc2ccccn2)cc1",
        "Brc1ccccn1.Cc1ccc(N)cc1.O=S(=O)(O[Pd]1c2ccccc2-c2ccccc2N~1)C(F)(F)F.COc1ccc(OC)c(P([C@]23C[C@H]4C[C@H](C[C@H](C4)C2)C3)[C@]23C[C@H]4C[C@H](C[C@H](C4)C2)C3)c1-c1c(C(C)C)cc(C(C)C)cc1C(C)C.CCN=P(N=P(N(C)C)(N(C)C)N(C)C)(N(C)C)N(C)C.COC(=O)c1ccno1>>Cc1ccc(Nc2ccccn2)cc1",
    ],
    ai_model="yield-2020-08-10",
)
for predicted_yield_dict in response["response"]["payload"]["content"]:
    print(predicted_yield_dict["value"])

Create a synthesis and start it on the robot (or simulator)

Create a synthesis from a retrosynthesis sequence:

# Each retrosynthetic path predicted has a unique sequence_id that can
# be used to create a new synthesis
response = rxn4chemistry_wrapper.create_synthesis_from_sequence(
    sequence_id=results['retrosynthetic_paths'][0]['sequenceId']
)
print(response['synthesis_id'])

# get the entire list of actions for the entire synthesis, as well as a tree representation
synthesis_tree, ordered_tree_nodes, ordered_list_of_actions = rxn4chemistry_wrapper.get_synthesis_plan(
    synthesis_id=response['synthesis_id']
)
for action in ordered_list_of_actions:
    print(action)

synthesis_status_result = rxn4chemistry_wrapper.start_synthesis(
    synthesis_id=response['synthesis_id']
)
print(synthesis_status_result['status'])

synthesis_status_result = rxn4chemistry_wrapper.get_synthesis_status(
    synthesis_id=response['synthesis_id']
)
print(synthesis_status_result['status'])

Forward prediction in batch

It is possible to run a batch of forward reaction predictions without linking them to a project:

response = rxn4chemistry_wrapper.predict_reaction_batch(precursors_list=['BrBr.c1ccc2cc3ccccc3cc2c1', 'Cl.c1ccc2cc3ccccc3cc2c1']*5)
# wait for the predictions to complete
time.sleep(2)
print(rxn4chemistry_wrapper.get_predict_reaction_batch_results(response["task_id"]))

NOTE: the results for batch prediction are not stored permanently in our databases, so we strongly recommend to save them since they will expire.

Prediction of multiple reaction outcomes (in batch)

It is also possible to predict multiple forward reaction prediction outcomes in batch:

response = rxn4chemistry_wrapper.predict_reaction_batch_topn(
    precursors_lists=[
        ["BrBr", "c1ccc2cc3ccccc3cc2c1"],
        ["BrBr", "c1ccc2cc3ccccc3cc2c1CCO"],
    ],
    topn=3,
)
# wait for the predictions to complete
time.sleep(2)
print(rxn4chemistry_wrapper.get_predict_reaction_batch_topn_results(response["task_id"]))

NOTE: the results for batch prediction are not stored permanently in our databases, so we strongly recommend to save them since they will expire.

Enable logging

Logging by the library is disabled by default as it may interfere with programmatic uses.

In the very top of the rxn4chemistry_tour.ipynb example notebook you can see a line that enables all logging in the notebook.

import logging
logging.basicConfig(level=logging.INFO, format='%(levelname)s : %(message)s')

This may also enable logging from other libraries. If you wish to selectively enable the logs from rxn4chemistry, consider something like this:

import logging
logger = logging.getLogger("rxn4chemistry")
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter('%(levelname)s : %(message)s'))
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)

Examples

To learn more see the examples.

Documentation

The documentation is hosted here using GitHub pages.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RXN4Chemistry-1.14.0.tar.gz (20.6 kB view details)

Uploaded Source

File details

Details for the file RXN4Chemistry-1.14.0.tar.gz.

File metadata

  • Download URL: RXN4Chemistry-1.14.0.tar.gz
  • Upload date:
  • Size: 20.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for RXN4Chemistry-1.14.0.tar.gz
Algorithm Hash digest
SHA256 777f10a522bb3f29815a54fe9c0f71723a50be197c80856f34f8c0b629a3efe9
MD5 bd5698a333178c0b88f5b4ce4b745fa6
BLAKE2b-256 96cab6fad1ad2185c6700fa1a02e3b3bcd00dc541d88e573499cda9a2fa4ceb9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page