Skip to main content

Generator of random mandalas.

Project description

Random Mandala Python package

Anton Antonov
Python-packages at GitHub/antononcube
November 2021
February 2022

Introduction

This Python package implements the function random_mandala that generates plots (and images) of random mandalas.

The design, implementation strategy, and unit tests closely resemble the Wolfram Repository Function (WFR) RandomMandala, [AAf1].

(Another, very similar function at WFR is RandomScribble, [AAf2].)

The Bezier mandala seeds are created using the Python package bezier, [DHp1].

For detailed descriptions of Machine Learning studies that use collections of random mandalas see the articles [AA1, AA2].


Installation

To install from GitHub use the shell command:

python -m pip install git+https://github.com/antononcube/Python-packages.git#egg=RandomMandala\&subdirectory=RandomMandala

To install from PyPI:

python -m pip install RandomMandala

Details and arguments

  • The mandalas made by random_mandala are generated through rotational symmetry of a “seed segment”.

  • The function random_mandala returns matplotlib figures (objects of type matplotlib.figure.Figure)

  • The function random_mandala can be given arguments of the creation function matplotlib.pyplot.figure.

  • If n_rows and n_columns are None a matplotlib figure object with one axes object is returned.

  • There are two modes of making random mandalas: (i) single-mandala mode and (ii) multi-mandala mode. The multi-mandala mode is activated by giving the radius argument a list of positive numbers.

  • If the argument radius is a list of positive reals, then a "multi-mandala" is created with the mandalas corresponding to each number in the radius list being overlain.

  • Here are brief descriptions of the arguments:

    • n_rows: Number of rows in the result figure.

    • n_columns: Number of columns in the result figure.

    • radius: Radius for the mandalas, a flot or a list of floats. If a list of floats the mandalas are overlain.

    • rotational_symmetry_order: Number of copies of the seed segment that comprise the mandala.

    • connecting_function: Connecting function, one of "line", "fill", "bezier", "bezier_fill", "random", or None. If 'random' or None a random choice of the rest of values is made.

    • number_of_elements: Controls how may graphics elements are in the seed segment.

    • symmetric_seed: Specifies should the seed segment be symmetric or not. If 'random' of None random choice between True and False is made.

    • face_color: Face (fill) color.

    • edge_color: Edge (line) color.


Examples

Load the package RandomMandala, matplotlib, and PIL:

from RandomMandala import random_mandala, figure_to_image
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm
from PIL import Image, ImageOps
from mpl_toolkits.axes_grid1 import ImageGrid
import random

Here we generate a random mandala:

random.seed(99)
fig = random_mandala()

png

Here we generate a figure with 12 (3x4) random mandalas:

random.seed(33)
fig2 = random_mandala(n_rows=3, n_columns=4, figsize=(6,6))
fig2.tight_layout()
plt.show()

png


Arguments details

n_rows, n_columns

With the argument n_rows and n_columns are specified the number of rows and columns respectively in the figure object; n_rows * n_columns mandalas are generated:

random.seed(22)
fig=random_mandala(n_rows=1, n_columns=3)

png

connecting_function

The argument connecting_function specifies which graphics primitives to be used over the seed segment points:

fig = matplotlib.pyplot.figure(figsize=(6, 6), dpi=120)

k = 1
for cf in ['line', 'fill', 'bezier', 'bezier_fill', 'random', None]:
    random.seed(667)
    fig = random_mandala(connecting_function=cf,
                         figure=fig,
                         location=(2, 3, k))
    ax = fig.axes[-1]
    ax.set_title(str(cf))
    k = k + 1
plt.show()
plt.close(fig)

png

With values None or "random" a random choice is made from ['line', 'fill', 'bezier', 'bezier_fill'].

radius

In single-mandala mode the argument radius specifies the radius of the seed segment and the mandala:

fig = matplotlib.pyplot.figure(figsize=(8, 4), dpi=120)
k = 1
for r in [5, 10, 15, 20]:
    random.seed(2)
    fig = random_mandala(connecting_function="line", 
                         radius=r,
                         figure = fig,
                         location = (1, 4, k))
    ax = fig.axes[-1]
    ax.set_title("radius:" + str(r))
    ax.axis("on")
    k = k + 1
plt.show()
plt.close(fig)

png

If the value given to radius is a list of positive numbers then multi-mandala mode is used. If radius=[r[0],...,r[k]], then for each r[i] is made a mandala with radius r[i] and the mandalas are drawn upon each other according to their radii order:

random.seed(99)
fig3=random_mandala(radius=[8,5,3], 
                    face_color=["blue", "green", 'red'],
                    connecting_function="fill")                

png

Remark: The code above used different colors for the different radii.

rotational_symmetry_order

The argument rotational_symmetry_order specifies how many copies of the seed segment comprise the mandala:

fig = matplotlib.pyplot.figure(figsize=(6, 12), dpi=120)
k = 1
for rso in [2, 3, 4, 6]:
    random.seed(122)
    fig = random_mandala(connecting_function="fill", 
                         symmetric_seed=True,
                         rotational_symmetry_order=rso,
                         figure = fig,
                         location = (1, 4, k))
    ax = fig.axes[-1]
    ax.set_title("order:" + str(rso))
    k = k + 1
plt.show()
plt.close(fig)

png

number_of_elements

The argument number_of_elements controls how may graphics elements are in the seed segment:

fig = matplotlib.pyplot.figure(figsize=(6, 6), dpi=120)
k = 1
for ne in [2, 3, 4, 5, 6, 12]:
    random.seed(2)
    fig = random_mandala(connecting_function="line",
                         symmetric_seed=True,
                         rotationa_symmetry_order=6,
                         number_of_elements=ne,
                         figure = fig,
                         location = (2, 3, k))
    ax = fig.axes[-1]
    ax.set_title("n:" + str(ne))
    k = k + 1
plt.show()
plt.close(fig)

png

fig = matplotlib.pyplot.figure(figsize=(4, 4), dpi=120)
k = 1
for ne in [5, 10, 15, 20]:
    random.seed(26)
    fig = random_mandala(connecting_function="bezier",
                         radius=[1],
                         symmetric_seed=True,
                         rotationa_symmetry_order=6,
                         number_of_elements=ne,
                         figure = fig,
                         location = (2, 2, k))
    ax = fig.axes[-1]
    ax.set_title("n:" + str(ne))
    k = k + 1
plt.show()
plt.close(fig)

png

symmetric_seed

The argument symmetric_seed specifies should the seed segment be symmetric or not:

fig = matplotlib.pyplot.figure(figsize=(4, 4), dpi=120)
k = 1
for ssd in [True, False]:
    random.seed(2)
    fig = random_mandala(connecting_function="fill", 
                         symmetric_seed=ssd,
                         figure = fig,
                         location = (1, 2, k))
    ax = fig.axes[-1]
    ax.set_title(str(ssd))
    k = k + 1
plt.show()
plt.close(fig)

png

face_color and edge_color

The arguments face_color and edge_color take as values strings or list of strings that specify the coloring of the filled-in polygons and lines respectively:

fig = matplotlib.pyplot.figure(figsize=(6,3), dpi=120)
k = 1
for fc in [["0.8", "0.6", "0.2"], ["olive", "gold", "red"]]:
    random.seed(11)
    fig = random_mandala(radius=[10,6,4],
     					 connecting_function="bezier_fill", 
                         symmetric_seed=True,
                         face_color=fc,
                         figure = fig,
                         location = (1, 2, k))
    ax = fig.axes[-1]
    ax.set_title(str(fc))
    k = k + 1
    
plt.show()
plt.close(fig)

png

alpha

The argument alpha controls the opacity of the plots; it takes as values None and floats between 0 and 1.

fig = matplotlib.pyplot.figure(figsize=(6,3), dpi=120)
k = 1
for al in [None, 0.2, 1.0]:
    random.seed(23)
    fig = random_mandala(radius=[10,6,4],
     					 connecting_function="bezier_fill",
                         symmetric_seed=True,
                         alpha=al,
                         color_mapper=matplotlib.cm.rainbow_r,
                         figure = fig,
                         location = (1, 3, k))
    ax = fig.axes[-1]
    ax.set_title(str(al))
    k = k + 1

plt.show()
plt.close(fig)

png

color_mapper

The argument color_mapper takes as values None and matplotlib.colors.Colormap objects. See the color mappers in the reference page "color example code: colormaps_reference.py". If color_mapper is specified then the arguments face_color and edge_color are ignored. Here is an example using two color mappers:

fig = matplotlib.pyplot.figure(figsize=(6,3), dpi=120)
cMappers=[matplotlib.cm.rainbow_r, matplotlib.cm.Accent_r]
cMappersNames=["rainbow_r", "Accent_r"]
for k in range(2): 
    random.seed(15)
    fig = random_mandala(radius=[10,6,4],
                         connecting_function="bezier_fill",
                         symmetric_seed=True,
                         color_mapper=cMappers[k],
                         figure = fig,
                         location = (1, 2, k+1))
    ax = fig.axes[-1]
    ax.set_title(cMappersNames[k])
    
plt.show()
plt.close(fig)

png


Applications

Generate a collection of images

In certain Machine Learning (ML) studies it can be useful to be able to generate large enough collections of (random) images.

In the code block below we:

  • Generate 64 random mandala plots
  • Convert them into PIL images using the package function figure_to_image
  • Invert and binarize images
  • Plot the images in an image grid
# A list to accumulate random mandala images
mandala_images = []

# Generation loop
random.seed(443)
for i in range(64):
    
    # Generate one random mandala figure
    fig2 = random_mandala(n_rows=None,
                          n_columns=None,
                          radius=[8, 6, 3],
                          rotational_symmetry_order=6,
                          symmetric_seed=True,
                          connecting_function='random',
                          face_color="0.")
    fig2.tight_layout()
    
    # Convert the figure into an image and add it to the list
    mandala_images = mandala_images + [figure_to_image(fig2)]
    
    # Close figure to save memoru
    plt.close(fig2)

# Invert image colors    
mandala_images2 = [ImageOps.invert(img) for img in mandala_images]

# Binarize images
mandala_images3 = [im.convert('1') for im in mandala_images2]

# Make a grid of images and display it
fig3 = plt.figure(figsize=(14., 14.))
grid = ImageGrid(fig3, 111,
                 nrows_ncols=(8, 8),
                 axes_pad=0.02,
                 )

for ax, img in zip(grid, mandala_images3):
    ax.imshow(img)
    ax.set(xticks=[], yticks=[])

plt.show()

png

Neat examples

A table of random mandalas

random.seed(124)
fig=random_mandala(n_rows=6, n_columns=6, figsize=(10,10), dpi=240)

png

A table of colorized mandalas

fig = matplotlib.pyplot.figure(figsize=(10, 10), dpi=120)
k = 1
random.seed(56)
for i in range(36):
    rs=list(range(1,random.choice([3,4,5,6])+1))
    rs.sort()
    rs.reverse()

    fig = random_mandala(connecting_function="bezier_fill",
                         color_mapper=matplotlib.cm.gist_earth,
   						 symmetric_seed=True,
                         radius=rs,
                         rotational_symmetry_order=random.choice([3,4,5,6,7]),
                         number_of_elements=random.choice([2,3,4]),
                         figure=fig,
                         location=(6, 6, k))
    ax = fig.axes[-1]
    ax.set_axis_off()
    k = k + 1

fig.tight_layout()
plt.show()
plt.close(fig)

png

A table of open colorized mandalas

fig = matplotlib.pyplot.figure(figsize=(10, 10), dpi=120)
k = 1
random.seed(883)
for rso in [2 * random.random() + 2 for _ in range(36)]:
    random.seed(33)
    fig = random_mandala(connecting_function="bezier_fill",
                         radius=3,
                         face_color="darkblue",
                         rotational_symmetry_order=rso,
                         number_of_elements=8,
                         figure=fig,
                         location=(6, 6, k))
    ax = fig.axes[-1]
    ax.set_axis_off()
    k = k + 1

plt.show()
plt.close(fig)

png


Acknowledgements


References

Articles

[AA1] Anton Antonov, "Comparison of dimension reduction algorithms over mandala images generation", (2017), [MathematicaForPrediction

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RandomMandala-0.6.0.tar.gz (17.9 kB view details)

Uploaded Source

Built Distribution

RandomMandala-0.6.0-py3-none-any.whl (14.9 kB view details)

Uploaded Python 3

File details

Details for the file RandomMandala-0.6.0.tar.gz.

File metadata

  • Download URL: RandomMandala-0.6.0.tar.gz
  • Upload date:
  • Size: 17.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for RandomMandala-0.6.0.tar.gz
Algorithm Hash digest
SHA256 824202563c815d45b8d88d5f863c4bbce294a30cac0a15ff60af7873dc99e69f
MD5 445877bf9f83c05f8df0c22d67661c85
BLAKE2b-256 b7f25847b4f02af8a5a24324e5cc7f35bd4749d24ff53c7e8099a3fd9bdd3f8d

See more details on using hashes here.

File details

Details for the file RandomMandala-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: RandomMandala-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 14.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2

File hashes

Hashes for RandomMandala-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cf7dd13ae40ea76cd813766f63f685d76264ba8024af3cc9c40a342c6418e40c
MD5 e4373288ce51a646f0e6fa15fd556858
BLAKE2b-256 b24ea60447ff10f40d0491a61f8cfcc4e8017365af587ed2fc75fee2b61899d3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page