Skip to main content

This software is being developed at the University of Aizu, Aizu-Wakamatsu, Fukushima, Japan

Project description

GitHub PyPI - License

rasterMiner

This open-source software empowers the users with the set of tools to discover knowledge hidden in raster datasets.
This software is distributed under GNU-V3 liscense.

rasterMiner currently supports the following knowledge discovery tasks:

  1. Data preprocessing and Nan value handling
  2. Pattern mining
  3. Clustering
  4. Classification
  5. Prediction (yet to be developed)

The user manual for rasterMiner is available at https://udayrage.github.io/rasterMiner/

Ways to execute rasterMiner

rasterMiner can be executed in any one of the following ways:

  1. Terminal-based execution
  2. GUI-based execution
  3. As a Python-library in QGIS, ARCGIS, ENVI, and in conventional python programs. (Under development)

Installation

Installation using Anaconda (Any operating system)

  1. Install and set up Anaconda. URL: https://linuxize.com/post/how-to-install-anaconda-on-centos-7

  2. Create a virtual environment using conda.

    conda create --name rasterMiner
    
  3. Enter into virtual environment.

    conda activate rasterMiner
    
  4. Install python using Conda.

    conda install python
    
  5. Install GDAL using Conda

    conda install gdal
    
  6. Install the following libraries using PIP

    pip install mplcursors matplotlib sklearn pandas pami
    
  7. Clone the rasterMiner repository using git clone command

    git clone https://github.com/udayRage/rasterMiner.git
    
  8. Execute the rasterMiner code by typing the following command

    python rasterMiner/rasterMiner/GUI/rasterMiner.py
    

Installation in MacOS

  1. Install Homebrew in Mac

  2. Install GDAL using brew

    sudo brew install gdal
    
  3. Install Git clone

    brew install git
    
  4. Install the following libraries using PIP

    pip install mplcursors matplotlib sklearn pandas pami
    
  5. Clone the rasterMiner

    git clone https://github.com/udayRage/rasterMiner.git
    
  6. Execute the rasterMiner code by typing the following command

    python rasterMiner/rasterMiner/GUI/rasterMiner.py
    

Installation in Ubuntu

  1. Execute the following four steps in the presented order:

    sudo apt-add-repository ppa:ubuntugis/ubuntugis-unstable
    sudo apt-get update
    sudo apt-get install gdal-bin
    sudo apt-get install git
    
  2. Install any Python 3 version

    sudo apt-get install python
    
  3. Install the following libraries using PIP

    pip install mplcursors matplotlib sklearn pandas pami
    
  4. Clone the rasterMiner

    git clone https://github.com/udayRage/rasterMiner.git
    
  5. Execute the rasterMiner code by typing the following command

    python rasterMiner/rasterMiner/GUI/rasterMiner.py
    

Execution of rasterMiner

  1. Execute the following command to open the GUI:

    python rasterMiner/rasterMiner/GUI/rasterMiner.py
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RasterMiner-0.1.2.5.tar.gz (52.8 kB view details)

Uploaded Source

Built Distribution

RasterMiner-0.1.2.5-py3-none-any.whl (85.6 kB view details)

Uploaded Python 3

File details

Details for the file RasterMiner-0.1.2.5.tar.gz.

File metadata

  • Download URL: RasterMiner-0.1.2.5.tar.gz
  • Upload date:
  • Size: 52.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for RasterMiner-0.1.2.5.tar.gz
Algorithm Hash digest
SHA256 70d4fdc4b462e0d159b2e9c90158d275ed24dbb0092eee67b31e8da5a7702d3c
MD5 002a1f4d020d756a586de649be077c7a
BLAKE2b-256 9270e545f00457e5e0bb3826f11865189882ec9ef9313a0a424755c93df9b047

See more details on using hashes here.

File details

Details for the file RasterMiner-0.1.2.5-py3-none-any.whl.

File metadata

  • Download URL: RasterMiner-0.1.2.5-py3-none-any.whl
  • Upload date:
  • Size: 85.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.6

File hashes

Hashes for RasterMiner-0.1.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 3c0a8b1cae5e2b5973af8984632bc67cdabe5e8743d3c53d98bbb005173e6217
MD5 af6787e185dad1ffe8fffe0ce2d52359
BLAKE2b-256 e5a5bbc9b7ed4d276e218fe35fb526429a7980d1935bddd8975e939630184bc7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page