Skip to main content

Library for handling equations of state for supranuclear matter, computing neutron star properties, and utilities for numerical relativity

Project description

What is this?

The pyRePrimAnd package provides a Python interface for the RePrimAnd C++ library which can be found here.

RePrimAnd is a support library for numerical simulations of general relativistic magnetohydrodynamics and other neutron star related problems. RePrimAnd provides

  • A general framework for handling matter equations of state,
  • A solver for the TOV equations describing nonrotating neutron stars
  • Tools for precomputing properties for sequences of neutron stars.
  • Methods for recovering primitive variables in GRMHD. This is not included in the Python interface because it is mainly needed for high performance computing.

Documentation

The documentation for the library and the Python interface can be found here

Installation

For the Linux platform, we provide Python wheels bundled with the precompiled library. They can be installed from pypi using

pip install pyreprimand

For other platforms, including Macs, one would first have to build and install the reprimand library from source (see here). Installing pyreprimand with pip will then try building from source. This may still fail as MacOS is not the development platform. In this case, please open a ticket on the issue tracker

Requirements

  • The numpy package

Only when building from source distribution:

  • A C++11 capable compiler (tested with gcc and clang).
  • Python pybind11 package >= 2.6.0 (only for Python bindings)
  • The RePrimAnd library (only when building from source dist)

Support

In case of errors in the Python interface or the library, submit a ticket to the issue tracker.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

RePrimAnd-1.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.7 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

RePrimAnd-1.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.7 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

RePrimAnd-1.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.7 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

RePrimAnd-1.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.7 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

RePrimAnd-1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

RePrimAnd-1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

RePrimAnd-1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

RePrimAnd-1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

RePrimAnd-1.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

RePrimAnd-1.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

File details

Details for the file RePrimAnd-1.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for RePrimAnd-1.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 52d6d609363d126c0a6ffe919c04b030f90f2d73d2b17c081573621a24308709
MD5 f2485a3d1ebc84d1fc1c83466cfa9ab8
BLAKE2b-256 fe4136742cae8dd1745cbcc425674facbc130682704b4bb2f38680198a8f865e

See more details on using hashes here.

File details

Details for the file RePrimAnd-1.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for RePrimAnd-1.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6bb56be9c90da81cd800d035df335aeb52318796fac4a53c38e7976284bb0c28
MD5 e0e47d31d99bc81b4e076539dd16adf5
BLAKE2b-256 c1708c2a203dbae00f6a46a1afd3c7ce9db1209b496fa1d0e45d7c7ccc409a4e

See more details on using hashes here.

File details

Details for the file RePrimAnd-1.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for RePrimAnd-1.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de999514f9ab9a4bfdb9aa0cc1e7203579531affc1d6eedcce866d3e81874bd8
MD5 64a51da65c4b4ef768f854bdb87b5efd
BLAKE2b-256 5321c8350c5117b70e067f3fb42263c9e95779b988c2942418fd626c77d51c61

See more details on using hashes here.

File details

Details for the file RePrimAnd-1.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for RePrimAnd-1.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1b18994bee28e3484cbb140027ffa5c4631c412ad055665bfd8931a2b07deaf
MD5 a45435101fd4eb384f3a781e613f6698
BLAKE2b-256 3c00f59d8e3f196ae84cc06c2beda59f6a6a22ec8474d131a703fb7d0e1cc7a6

See more details on using hashes here.

File details

Details for the file RePrimAnd-1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for RePrimAnd-1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca9602441e82cbff0e13a334321c67c73cc9318f752b8959bfa63216816f9af2
MD5 c7096c22bc3c9dedd7cc9b9207b59a9b
BLAKE2b-256 18b97ffcac3cfb5616a7d092f23dd1727d6dd3113abba75a6d3525ee883373b3

See more details on using hashes here.

File details

Details for the file RePrimAnd-1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for RePrimAnd-1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f724a860978eb353859c33944018eded6a04c5778073c4cef4a846de9f194fc
MD5 f94281516722831719c14e9ec38bfe96
BLAKE2b-256 f6f88c47c08c3d6155deb902942241468a705416624131ce947805fe9c9f6854

See more details on using hashes here.

File details

Details for the file RePrimAnd-1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for RePrimAnd-1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 59c07618b3e783b9429e03183a65ba6d27fd7be011f005c5542ed1623b43562b
MD5 9406f70134004862bf282170d940d78c
BLAKE2b-256 13f67612efa13de0a0a198f04999f00fe8c0de160a11a0c60e94c33502346218

See more details on using hashes here.

File details

Details for the file RePrimAnd-1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for RePrimAnd-1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b920bb5e3427980ec899a7c7defc909c5248cc562f0c19cd1f20a771cdaa9a6
MD5 fb2ab1e15fa5c3d910cb16ccd2719e51
BLAKE2b-256 48a83b31d6f40c19875f8edfe783de1010f7912bb90e9dac51e80aa9f1603cc3

See more details on using hashes here.

File details

Details for the file RePrimAnd-1.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for RePrimAnd-1.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06f6bd4956ab8615e8a20dfecd1fc30db6dd0d77cde0c99571fde4abe42bb643
MD5 321f5e0ea136af4b2521a165d30ce1a3
BLAKE2b-256 50aad061dad6e13865f75ba6ebaa6a04428a1d94f680db6ee6dc86700e9f8db5

See more details on using hashes here.

File details

Details for the file RePrimAnd-1.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for RePrimAnd-1.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db477b29f092e97604a60cde7e21eb9c001ff600b6cc39565fbd6485544be8a4
MD5 598eb7282a608a05d90d35371c6debfe
BLAKE2b-256 f4edf9a5330628f68f75ba83d56b279a3da341c5298b55562456b6e7cdacb2fc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page