Skip to main content

ReacNetGenerator: An automatic reaction network generator for reactive molecular dynamics simulation.

Project description

ReacNetGenerator

DOI:10.1039/C9CP05091D Citations Research Group

An automatic reaction network generator for reactive molecular dynamics simulation.

ReacNetGenerator: an automatic reaction network generator for reactive molecular dynamic simulations, Phys. Chem. Chem. Phys., 2020, 22 (2): 683–691, doi: 10.1039/C9CP05091D

jinzhe.zeng@rutgers.edu (Jinzhe Zeng), tzhu@lps.ecnu.edu.cn (Tong Zhu)

Features

  • Processing of MD trajectory containing atomic coordinates or bond orders
  • Hidden Markov Model (HMM) based noise filtering
  • Isomers identifying accoarding to SMILES
  • Generation of reaction network for visualization using force-directed algorithm
  • Parallel computing

Guide and Tutorial

The latest version requires Python 3.7 or later. You can install ReacNetGenerator with conda:

conda install reacnetgenerator -c conda-forge
reacnetgenerator -h

See the guide to learn how to install and use ReacNetGenerattor. We also provide a series of tutorials to help you learn ReacNetGenerator.

Awards

  • The First Prize in 2019 (the 11th Session) Shanghai Computer Application Competition for College Students
  • The First Prize in 2019 (the 12th Session) Chinese Computer Design Competition for College Students

Acknowledge

  • National Natural Science Foundation of China (Grants No. 91641116)
  • National Innovation and Entrepreneurship Training Program for Undergraduate (201910269080)
  • ECNU Multifunctional Platform for Innovation (No. 001)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

reacnetgenerator-1.6.14.tar.gz (77.5 kB view details)

Uploaded Source

Built Distributions

reacnetgenerator-1.6.14-cp37-abi3-win_amd64.whl (898.6 kB view details)

Uploaded CPython 3.7+ Windows x86-64

reacnetgenerator-1.6.14-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (898.0 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARM64

reacnetgenerator-1.6.14-cp37-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (900.1 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

reacnetgenerator-1.6.14-cp37-abi3-macosx_10_9_universal2.whl (910.5 kB view details)

Uploaded CPython 3.7+ macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file reacnetgenerator-1.6.14.tar.gz.

File metadata

  • Download URL: reacnetgenerator-1.6.14.tar.gz
  • Upload date:
  • Size: 77.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for reacnetgenerator-1.6.14.tar.gz
Algorithm Hash digest
SHA256 3b829d871fa785a577e7d230172cafffef8640531d022a2b1f5501d83a7f217b
MD5 7d11e0ccefe6f79a4106499ad7100280
BLAKE2b-256 c16c3575d5725a64c2fc6c6ff53f405e088f540e4cbbb29ff2288dcdc031aa55

See more details on using hashes here.

File details

Details for the file reacnetgenerator-1.6.14-cp37-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for reacnetgenerator-1.6.14-cp37-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 6b8715a5487e98c2524a1765f386fb8cfafda2ffe0d3a1e16d5d81e43403f6e1
MD5 f5c0af9a14f3149dec52388c3a9df1d0
BLAKE2b-256 dd53cf602c55251a3ed4295f1dfce442511e43db31a31556702a8e64bc483274

See more details on using hashes here.

File details

Details for the file reacnetgenerator-1.6.14-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for reacnetgenerator-1.6.14-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e6904795958fae7ca35997943b0251ba9032b04b4c77a5c3f7f28b95d2d0195c
MD5 f08a6d52c041816ff8f5acef79ace8e9
BLAKE2b-256 4e3e41cacf80623e15ca0729277ba2143a2f92d44e7929690ff893b18106b682

See more details on using hashes here.

File details

Details for the file reacnetgenerator-1.6.14-cp37-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for reacnetgenerator-1.6.14-cp37-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bcf03947d17a09035b19f677dad4e01e78f6958eba8315d8ce84335d89defbe2
MD5 7f3f246dc0fb319a82b941a1faf8a9a6
BLAKE2b-256 f4ca4be212342538930e2f310f705065b1f40008b953c01c959fbbe80bce9426

See more details on using hashes here.

File details

Details for the file reacnetgenerator-1.6.14-cp37-abi3-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for reacnetgenerator-1.6.14-cp37-abi3-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 883bf1c85b848ee59b98d258fbad989ac2e4e55e5061c64a0772d45d2f22bc40
MD5 082bc6525604df60d633b362b497de97
BLAKE2b-256 1a24ea046cefc157c6c7771c924306e729eda4a8082575560272d089a29b067e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page