Skip to main content

An educational module for experimenting with the YOLO logic for multi-instance object detection and for generating region proposals with graph-based algorithms

Project description

Consult the module API page at

https://engineering.purdue.edu/kak/distRPG/RegionProposalGenerator-2.1.0.html

for all information related to this module, including information related to the latest changes to the code. The page at the URL shown above lists all of the module functionality you can invoke in your own code.

Single-Instance and Multi-Instance Object Detection:

    Say you wish to experiment with YOLO-like logic for multi-instance
    object detection, you would need to construct an instance of the
    RegionProposalGenerator class and invoke the methods shown below on
    this instance:

    rpg = RegionProposalGenerator(
                      dataroot = "./data/",
                      image_size = [128,128],
                      yolo_interval = 20,
                      path_saved_yolo_model = "./saved_yolo_model",
                      momentum = 0.9,
                      learning_rate = 1e-6,
                      epochs = 40,
                      batch_size = 4,
                      classes = ('Dr_Eval','house','watertower'),
                      use_gpu = True,
                  )
    yolo = RegionProposalGenerator.YoloLikeDetector( rpg = rpg )
    yolo.set_dataloaders(train=True)
    yolo.set_dataloaders(test=True)
    model = yolo.NetForYolo(skip_connections=True, depth=8)
    model = yolo.run_code_for_training_multi_instance_detection(model, display_images=False)
    yolo.run_code_for_training_multi_instance_detection(model, display_images = True)


Graph-Based Algorithms for Region Proposals:

    To generate region proposals, you would need to construct an instance
    of the RegionProposalGenerator class and invoke the methods shown below
    on this instance:

    rpg = RegionProposalGenerator(
                   ###  The first 6 options affect only the graph-based part of the algo
                   sigma = 1.0,
                   max_iterations = 40,
                   kay = 0.05,
                   image_normalization_required = True,
                   image_size_reduction_factor = 4,
                   min_size_for_graph_based_blobs = 4,
                   ###  The next 4 options affect only the Selective Search part of the algo
                   color_homogeneity_thresh = [20,20,20],
                   gray_var_thresh = 16000,
                   texture_homogeneity_thresh = 120,
                   max_num_blobs_expected = 8,
          )

    image_name = "images/mondrian.jpg"
    segmented_graph,color_map = rpg.graph_based_segmentation(image_name)
    rpg.visualize_segmentation_in_pseudocolor(segmented_graph[0], color_map, "graph_based" )
    merged_blobs, color_map = rpg.selective_search_for_region_proposals( segmented_graph, image_name )
    rpg.visualize_segmentation_with_mean_gray(merged_blobs, "ss_based_segmentation_in_bw" )

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RegionProposalGenerator-2.1.0.tar.gz (365.7 kB view details)

Uploaded Source

File details

Details for the file RegionProposalGenerator-2.1.0.tar.gz.

File metadata

File hashes

Hashes for RegionProposalGenerator-2.1.0.tar.gz
Algorithm Hash digest
SHA256 a6f72113f02d6135ddbf5dbf9ba14f52aa8c539b8dcfa5512343e4529cee42fd
MD5 10d10117634a8268b3628a7cfa377fcd
BLAKE2b-256 6f17274c081644aef3e57885f6f3fd7b9b1b43bbf7dc507da5d74336c678787e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page