Skip to main content

A package for identifying the translated ORFs using ribosome-profiling data

Project description

RiboCode is a very simple but high-quality computational algorithm to identify genome-wide translated ORFs using ribosome-profiling data.

Dependencies:

  • pysam

  • pyfasta

  • h5py

  • Biopython

  • Numpy

  • Scipy

  • matplotlib

  • setuptools

Installation

RiboCode can be installed like any other Python packages. Here are some popular ways:

  • Install from PyPI:

pip install RiboCode
  • Install from local:

pip install RiboCode-*.tar.gz

If you have not administrator permission, you need to install RiboCode locally in you own directory by adding the option --user to installation commands. Then, you need to add ~/.local/bin/ to the PATH variable, and ~/.local/lib/ to the PYTHONPATH variable. For example, if you are using the bash shell, you would do this by adding the following lines to your ~/.bashrc file:

export PATH=$PATH:$HOME/.local/bin/
export PYTHONPATH=$HOME/.local/lib/python2.7

You then need to source your ~/.bashrc file by this command:

source ~/.bashrc

Tutorial to analyze ribosome-profiling data and run RiboCode

Here, we use the HEK293 dataset as an example to illustrate the use of RiboCode. Please make sure the path of file is correctly.

  1. Required files

    The genome FASTA file, GTF file for annotation can be downloaded from:

    http://www.gencodegenes.org

    or from:

    http://asia.ensembl.org/info/data/ftp/index.html

    http://useast.ensembl.org/info/data/ftp/index.html

    For example, the required files in this tutorial can be downloaded from following URL:

    GTF: ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.annotation.gtf.gz

    FASTA: ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/GRCh37.p13.genome.fa.gz

    The raw Ribo-seq FASTQ file can be download by using fastq-dump tool from SRA_Toolkit:

    fastq-dump -A <SRR1630831>
  2. Trimming adapter sequence for ribo-seq data

    Using cutadapt program https://cutadapt.readthedocs.io/en/stable/installation.html

    Example:

    cutadapt -m 20 --match-read-wildcards -a (Adapter sequence) -o <Trimmed fastq file> <Input fastq file>

    Here, the adapter sequences for this data had already been trimmed off, so we can skip this step.

  3. Removing ribosomal RNA(rRNA) derived reads

    Align the trimmed reads to rRNA sequences using Bowtie, then select unaligned reads for the next step.

    Bowtie program http://bowtie-bio.sourceforge.net/index.shtml

    rRNA sequences: We provided a rRNA.fa file in data folder of this package.

    Example:

    bowtie-build <rRNA.fa> rRNA
    bowtie -p 8 -norc --un un_aligned.fastq rRNA -q <SRR1630831.fastq> <HEK293_rRNA.align>
  4. Aligning the clean reads to reference genome

    Using STAR program: https://github.com/alexdobin/STAR

    Example:

    (1). Build index

    STAR --runThreadN 8 --runMode genomeGenerate --genomeDir <hg19_STARindex>
    --genomeFastaFiles <hg19_genome.fa> --sjdbGTFfile <gencode.v19.annotation.gtf>

    (2). Alignment:

    STAR --outFilterType BySJout --runThreadN 8 --outFilterMismatchNmax 2 --genomeDir <hg19_STARindex>
    --readFilesIn <un_aligned.fastq>  --outFileNamePrefix (HEK293) --outSAMtype BAM
    SortedByCoordinate --quantMode TranscriptomeSAM GeneCounts --outFilterMultimapNmax 1
    --outFilterMatchNmin 16
  5. Running *RiboCode* to identify translated ORFs

    (1). Preparing the transcripts annotation files:

    prepare_transcripts -g <gencode.v19.annotation.gtf> -f <hg19_genome.fa> -o <RiboCode_annot>

    (2). Selecting the length range of the RPF reads and identify the P-site locations:

    metaplots -a <RiboCode_annot> -r <HEK293Aligned.toTranscriptome.out.bam>

    This step will generate a PDF file, which plots the aggregate profiles of the distance between the 5’-end of reads and the annotated start codons or stop codons.

    Users can select the read lengths which show strong 3-nt periodicity and identify the P-site locations for each length.

    (3). Detecting translated ORFs using the ribosome-profiling data:

    RiboCode -a <RiboCode_annot> -c <config.txt> -l no -o <RiboCode_ORFs_result>

    Specify the information of the bam file and P-site parameters in config.txt, please refer to the example file in data folder.

    Explanation of final result files

    The RiboCode generates two text files as below: The “(output file name).txt” contains the information of predicted ORFs in each transcript; The “(output file name)_collapsed.txt” file combines the ORFs with the same stop codon in different transcript isoforms: the one harboring the most upstream in-frame ATG is chosen. Some column names of the result file:

    - ORF_ID: The identifier of ORFs that predicated.
    - ORF_type: The type of ORF. The following ORF categories are reported:
    
     "annotated" (overlapping annotated CDS, have the same stop with annnotated CDS)
    
     "uORF" (in upstream of annotated CDS, not overlapping annotated CDS)
    
     "dORF" (in downstream of annotated CDS, not overlapping annotated CDS)
    
     "Overlap_uORF" (in upstream of annotated CDS, overlapping annotated CDS)
    
     "Overlap_dORF" (in downstream of annotated CDS, overlapping annotated CDS"
    
     "Internal" (in internal of annotated CDS, but in a different frame relative annotated CDS)
    
     "novel" (in non-coding genes or non-coding transcripts of coding genes).
    
    - ORF_tstart, ORF_tstop: the beginning and end of ORF in RNA transcript (1-based coordinate)
    - ORF_gstart, ORF_gstop: the beginning and end of ORF in genome (1-based coordinate)
    - pval_frame0_vs_frame1: significance levels of P-site densities of frame0 greater than of frame1
    - pval_frame0_vs_frame2: significance levels of P-site densities of frame0 greater than of frame2
    - pval_combined: integrated P-value

    (4). (optional) plot the P-site densities of predicted ORFs

    Users can plot the density of predicted ORFs using the “plot_orf_density” command, as example below:

    plot_orf_density -a <RiboCode_annot> -c <config.txt> -t (transcript_id)
    -s (ORF_gstart) -e (ORF_gstop)

For any questions, please contact:

Zhengtao Xiao (xzt13@mails.tsinghua.edu.cn)

Rongyao Huang (THUhry12@163.com)

Xudong Xing (xudonxing_bioinf@sina.com)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RiboCode-1.2.2.tar.gz (38.7 kB view details)

Uploaded Source

Built Distribution

RiboCode-1.2.2-py2.py3-none-any.whl (28.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file RiboCode-1.2.2.tar.gz.

File metadata

  • Download URL: RiboCode-1.2.2.tar.gz
  • Upload date:
  • Size: 38.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for RiboCode-1.2.2.tar.gz
Algorithm Hash digest
SHA256 5f83b6f51062df9f4e98b9c12b533bba5f43d110b9b9468d8ce82319deee60c5
MD5 7357963ca3b0c3817831eafdca5bd26d
BLAKE2b-256 2513df4a2fe23df14382003d0b0a12f8a988339589a5b57664fe69e92e4bfddd

See more details on using hashes here.

File details

Details for the file RiboCode-1.2.2-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for RiboCode-1.2.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 db2a1c083aea689c3985443ef59f3e6f16c5eaf9c6bbe67b745468f6d5c3b1e8
MD5 37e6bc9e766f84ff8d919636c55bab8a
BLAKE2b-256 fb6455b8fc775f2361423ca75eb48a30255cc7585c7a701b8d0f71121c43a06b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page