Skip to main content

Generalized semantic regression with a BERT base.

Project description

generalized-semantic-regression

RiskBERT is a significant step forward, making it easier than ever to incorporate text fragments into various applications, such as insurance frequency and severity models, or other GLM-based models. Feel free to explore and utilize RiskBERT for your text analysis needs.

To learn more about the RiskBERT implementation read this article: https://www.thebigdatablog.com/generalized-semantic-regression-using-contextual-embeddings/

Example: pip install RiskBERT

from transformers import AutoTokenizer
import torch
from RiskBERT import glmModel, RiskBertModel
from RiskBERT import trainer, evaluate_model
from RiskBERT.simulation.data_functions import Data
from RiskBERT.utils import DataConstructor

# Set device to gpu if available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Init the model
model_dataset = Data(20000, scores=torch.tensor([[0.2],[0.4]]), weigth=5)
pre_model= "distilbert-base-uncased"
model = RiskBertModel(model=pre_model, input_dim=2, dropout=0.4, freeze_bert=True, mode="CLS")
tokenizer = AutoTokenizer.from_pretrained(pre_model)
# Train the model
model, Total_Loss, Validation_Loss, Test_Loss = trainer(model =model, 
        model_dataset=model_dataset, 
        epochs=100,
        batch_size=1000,
        evaluate_fkt=evaluate_model,
        tokenizer=tokenizer, 
        optimizer=torch.optim.SGD(model.parameters(), lr=0.001),
        device = device
        )

# Predict from the model
my_data = DataConstructor(
    sentences=[["Dies ist ein Test"],["Hallo Welt", "RiskBERT ist das Beste"]], 
    covariates=[[1,5],[2,6]],
    tokenizer= tokenizer).prepare_for_model()
my_prediction=model(**my_data)

Upload to pip

python -m pip install build twine
python -m build
twine check dist/*
twine upload dist/*`

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RiskBERT-0.0.9.tar.gz (21.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

RiskBERT-0.0.9-py3-none-any.whl (16.2 kB view details)

Uploaded Python 3

File details

Details for the file RiskBERT-0.0.9.tar.gz.

File metadata

  • Download URL: RiskBERT-0.0.9.tar.gz
  • Upload date:
  • Size: 21.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for RiskBERT-0.0.9.tar.gz
Algorithm Hash digest
SHA256 60497ca774844542f2984c3b1e1a47c22e563ceac72f596aac2899ff5e0ede08
MD5 a83a0fbc87dbcb32e4d0efde1d4b6975
BLAKE2b-256 15c0c92d553c20a8e3878ccc44d9105839a20b24b7fcef1a8bf335c134908874

See more details on using hashes here.

File details

Details for the file RiskBERT-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: RiskBERT-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 16.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for RiskBERT-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 720f02e9303eb36911c36d73916111b29858aed4f1e0298902480b09710a8c3c
MD5 50a9dd37387190fa30466f953d5585b0
BLAKE2b-256 35a0d5768ccba22360beca65a5b13a7a7f78da337ce74f334cef2e019ea3b837

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page