No project description provided
Project description
SMOF-MOF
Installation
You can install SMOF-MOF
using pip
pip install SMOF-MOF
Mass ratio variance-based outlier factor (MOF)
the outlier score of each data point is called MOF
. It measures the global deviation of density given sample with respect to other data points.
it is global in the outlier score depend on how isolated. data point is with respect to all data points in the data set.
the variance of mass ratio can identify data points that have a substantially. lower density compared to other data points.
These are considered outliers.
MOF()
Initial a model of
MOF
Parameters :
Return :
self : object
object of MOF model
MOF.fit(Data)
Fit data to
MOF
model
Parameters :
Data : numpy array of shape (n_points, d_dimensions)
The input samples.
Return :
self : object
fitted estimator
Process_MOF(X =[])
Process data with
MOF
Parameters :
X : numpy array of shape (n_points, d_dimensions)
The input samples.
Return :
decision_scores_ : numpy array of shape (n_samples)
decision score for each point
MOF attributes
Attributes | Type | Details |
---|---|---|
MOF.Data | numpy array of shape (n_points, d_dimensions) | input data for model |
MOF.MassRatio | numpy array of shape (n_samples, n_points) | MassRatio for each a pair of points |
MOF.decision_scores_ | numpy array of shape (n_samples) | decision score for each point |
Examples
# This example demonstrates the usage of MOF
from SMOF_MOF import Process_MOF
import numpy as np
X = [[ 0.74193734, 6.84385655, 5.90835464],
[ 0.74193734, 6.69344758, 5.76863345],
[ 0.74193734, 9.45125311, 7.21457799],
[ 1.62924054, 7.58482389, 5.79026593],
[ 1.80828877, 7.46054784, 5.79939564],
[ 1.62924054 , 7.03623644, 5.78720408],
[ 2.6461748 , 9.44786798, 7.21604848],
[ 0.09531018, 7.91465424, 6.00166237],
[ 0.09531018, 6.61217543, 5.77796187]]
X = np.array(X)
score = Process_MOF(X)
print(scores)
Output
[0.05043327 0.03993228 0.34079475 0.07714844 0.10691165 0.063680160.4016755 0.81238359 0.04089301]
Note The data size should not exceed 10000 points because MOF uses high memory.
Streaming Mass ratio variance-based outlier factor (SMOF)
the outlier score of each data point is called SMOF
. It measures the global deviation of density of data points in current window with respect to data points in the refernce window. this algoihtm process in non-overlapping window. the mutiply between variance of mass ratio of each data point and average of them in present window can identify data points that have a substantially lower density compared to other data points. These are considered outliers.
SMOF(win=256, seed=42, Train=[])
Initial a model of
SMOF
Parameters :
win : int (default = 256)
window size of sum of reference and current window
seed : int (default = 42)
random seed
Train : numpy array of shape (n_points, d_dimensions)
data points for intilized model
Return :
self : object
object of SMOF model
SMOF.fit(X_current)
Move current data point to current window and assign
SMOF
scores
Parameters :
X_current : numpy array of shape (n_points, d_dimensions)
current data point from streaming data
Return :
self : object
fitted estimator
Process_SMOF(Win=500, X =[], Seed=42)
Process data with
SMOF
Parameters :
win : int (default = 500)
window size of sum of reference and current window
X : numpy array of shape (n_points, d_dimensions)
The input samples.
seed : int (default = 42)
random seed
Return :
SMOFs : numpy array of shape (n_samples)
decision score for each point
SMOF attributes
Attributes | Type | Details |
---|---|---|
MOF.win | int | window size of sum of reference and current window |
MOF.window_current | numpy array of shape (n_samples, n_points) | current data point from streaming data |
MOF.SMOFs | numpy array of shape (n_samples) | decision score for each point |
Examples
# This example demonstrates the usage of SMOF
from SMOF_MOF import Process_SMOF
import numpy as np
X = [[-2.30258509, 7.71114603, 5.81740873]
[-2.30258509, 6.93449458, 5.81144035]
[ 0.09531018, 7.26410017, 5.99670081]
[ 1.13140211, 7.17019646, 5.80242044]
[ 0.74193734, 7.06227732, 5.90835464]
[-2.30258509, 6.64391993, 5.80844275]
[ 1.13140211, 7.69807454, 5.91106761]
[ 0.09531018, 6.79805201, 5.81442899]
[ 0.09531018, 7.42362814, 5.92719266]
[ 0.09531018, 6.9118469 , 5.81144035]
[-2.30258509, 7.01040212, 5.80242044]
[ 0.09531018, 7.13894636, 5.91106761]
[ 0.09531018, 7.61928251, 5.80242044]
[ 0.09531018, 7.29580291, 6.01640103]
[-2.30258509, 12.43197678, 5.79331844]
[ 1.13140211, 9.53156118, 7.22336862]
[-2.30258509, 7.09431783, 5.79939564]
[ 0.09531018, 7.50444662, 5.82037962]
[ 0.09531018, 7.8184705 , 5.82334171]
[ 0.09531018, 7.25212482, 5.91106761]]
X = np.array(X)
score = Process_SMOF(Win=10,X=X)
print(score)
Output
<runtime> 10it [00:00, 509.68it/s]
[0.02466581 0.00734274 0.00502668 0.00333289 0.00544248 0.0046538 0.00933626 0.00316922 0.00294779 0.00122089 0.01376553 0.00126867 0.00730856 0.00496102 0.03370523 0.13718442 0.03043219 0.02105821 0.02646965 0.00197488]
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file SMOF_MOF-0.3.tar.gz
.
File metadata
- Download URL: SMOF_MOF-0.3.tar.gz
- Upload date:
- Size: 5.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 385c1d82fdd0179f921980d93601d74c2a2b2df9fb8d13ed523100814915789b |
|
MD5 | 0b819b3f01130b86e5175b426f52a101 |
|
BLAKE2b-256 | 99f6c5c3da8b306c1504f29751059ae591cd69f6fdb1d7163f75104c1795b9cf |
File details
Details for the file SMOF_MOF-0.3-py3-none-any.whl
.
File metadata
- Download URL: SMOF_MOF-0.3-py3-none-any.whl
- Upload date:
- Size: 6.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4dbc19df943b460a5de1376e48cbf73f62d09fa6cf2cf3f59132dd79b5a6b60d |
|
MD5 | ec01d1f5de52b562aff20bad3aa03161 |
|
BLAKE2b-256 | 33c536073bcf6a861791ae428679aa359d667bb1f215b5e0fab4bc25168630b6 |