Skip to main content

Python package for SSVEP datasets and algorithms

Project description

SSVEP Analysis Toolbox

This repository provides a python package for SSVEP datasets and recognition algorithms. The goal of this toolbox is to make researchers be familier with SSVEP signals and related recognition algorithms quickly, and focus on improving algorithms with shortest preparation time.

Most conventional recognition algorithms are implemented using both eigen decomposition and least-square unified framework. The least-square unified framework demonstrates various design strategies applied in the correlatiion analysis (CA)-based SSVEP spatial filtering algorithms and their relationships.

More detailed information can be found in document.

Features

  • Mutiple implementations of various algorithms:
    • Eigen decomposition
    • Least-square unified framework
  • Unify formats of SSVEP datasets
  • Provide a standard processing procedure for faire performance comparisons
  • Python implementations of SSVEP recognition algorithms

Datasets and Algorithms

  • Datasets

    • Benchmark dataset: Y. Wang, X. Chen, X. Gao, and S. Gao, "A benchmark dataset for SSVEP-based braincomputer interfaces," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 10, pp. 1746–1752, 2017. DOI: 10.1109/TNSRE.2016.2627556.
    • BETA dataset: B. Liu, X. Huang, Y. Wang, X. Chen, and X. Gao, "BETA: A large benchmark database toward SSVEP-BCI application," Front. Neurosci., vol. 14, p. 627, 2020. DOI: 10.3389/fnins.2020.00627.
    • Nakanishi2015 dataset: M. Nakanishi, Y. Wang, Y.-T. Wang, T.-P. Jung, "A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked Potentials," PLoS ONE, vol. 10, p. e0140703, 2015. DOI: 10.1371/journal.pone.0140703.
    • eldBETA dataset: B. Liu, Y. Wang, X. Gao, and X. Chen, "eldBETA: A Large eldercare-oriented benchmark database of SSVEP-BCI for the aging population," Scientific Data, vol. 9, no. 1, pp.1-12, 2022. DOI: 10.1038/s41597-022-01372-9.
    • openBMI dataset: M.-H. Lee, O.-Y. Kwon, Y.-J. Kim, H.-K. Kim, Y.-E. Lee, J. Williamson, S. Fazli, and S.-W. Lee, "EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy," GigaScience, vol. 8, no. 5, p. giz002, 2019. DOI: 10.1093/gigascience/giz002.
    • Wearable dataset: F. Zhu, L. Jiang, G. Dong, X. Gao, and Y. Wang, “An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces,” Sensors, vol. 21, no. 4, p. 1256, 2021. DOI: 10.3390/s21041256.
    • ...
  • Algorithms

    • Implementations based on eigen decomposition
      • Standard canonical correlation analysis (sCCA) and filterbank CCA (FBCCA): Chen, X., Wang, Y., Gao, S., Jung, T.P. and Gao, X., "Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface," J. Neural Eng., vol. 12, no. 4, p. 046008, 2015. DOI: 10.1088/1741-2560/12/4/046008.
      • Individual template CCA (itCCA) and Extended CCA (eCCA): X. Chen, Y. Wang, M. Nakanishi, X. Gao, T.-P. Jung, and S. Gao, "High-speed spelling with a noninvasive brain–computer interface," Proc. Natl. Acad. Sci., vol. 112, no. 44, pp. E6058–E6067, 2015. DOI: 10.1073/pnas.1508080112.
      • Multi-stimulus CCA (ms-CCA): C. M. Wong, F. Wan, B. Wang, Z. Wang, W. Nan, K. F. Lao, P. U. Mak, M. I. Vai, and A. Rosa, "Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs," J. Neural Eng., vol. 17, no. 1, p. 016026, 2020. DOI: 10.1088/1741-2552/ab2373.
      • Multi-set CCA (MsetCCA): Y. Zhang, G. Zhou, J. Jin, X. Wang, A. Cichocki, "Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis," Int J Neural Syst., vol. 24, 2014, p. 1450013. DOI: 10.1142/ S0129065714500130.
      • Multi-set CCA with reference signals (MsetCCA-R): C. M. Wong, B. Wang, Z. Wang, K. F. Lao, A. Rosa, and F. Wan, "Spatial filtering in SSVEP-based BCIs: Unified framework and new improvements.," IEEE Transactions on Biomedical Engineering, vol. 67, no. 11, pp. 3057-3072, 2020. DOI: 10.1109/TBME.2020.2975552.
      • Task-related component analysis (TRCA) and Ensemble TRCA (eTRCA): M. Nakanishi, Y. Wang, X. Chen, Y.-T. Wang, X. Gao, and T.-P. Jung, "Enhancing detection of SSVEPs for a high-speed brain speller using task-related component Analysis," IEEE Trans. Biomed. Eng., vol. 65, no. 1, pp. 104–112, 2018. DOI: 10.1109/TBME.2017.2694818.
      • Task-related component analysis with reference signals (TRCA-R) and Ensemble TRCA with reference signals (eTRCA-R): C. M. Wong, B. Wang, Z. Wang, K. F. Lao, A. Rosa, and F. Wan, "Spatial filtering in SSVEP-based BCIs: Unified framework and new improvements.," IEEE Transactions on Biomedical Engineering, vol. 67, no. 11, pp. 3057-3072, 2020. DOI: 10.1109/TBME.2020.2975552.
      • Sum of squared correlations (SSCOR) and Ensemble sum of squared correlations (eSSCOR): G. K. Kumar, and M. R. Reddy, "Designing a sum of squared correlations framework for enhancing SSVEP-based BCIs," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 27, no. 10, pp. 2044-2050, 2019. DOI: 10.1109/TNSRE.2019.2941349.
      • Multi-stimulus TRCA (ms-TRCA): C. M. Wong, F. Wan, B. Wang, Z. Wang, W. Nan, K. F. Lao, P. U. Mak, M. I. Vai, and A. Rosa, "Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs," J. Neural Eng., vol. 17, no. 1, p. 016026, 2020. DOI: 10.1088/1741-2552/ab2373.
      • Task-discriminant component analysis (TDCA): B. Liu, X. Chen, N. Shi, Y. Wang, S. Gao, X. Gao, "Improving the performance of individually calibrated SSVEP-BCI by task-discriminant component analysis." IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 1998-2007, 2021. DOI: 10.1109/TNSRE.2021.3114340.
      • Online adaptive CCA (OACCA) (OACCA): C. M. Wong et al., “Online adaptation boosts SSVEP-based BCI performance,” IEEE Trans. Biomed. Eng., vol. 69, no. 6, pp. 2018-2028, 2022. DOI: 10.1109/TBME.2021.3133594.
      • ...
    • Implementations based on least-square unified framework
      • sCCA, itCCA, eCCA, (e)TRCA, (e)TRCA-R, MsetCCA, MsetCCA-R, ms-CCA, ms-(e)TRCA, TDCA
      • ms-MsetCCA-R-1
      • ms-MsetCCA-R-2
      • ms-MsetCCA-R-3
      • ms-(e)TRCA-R-1
      • ms-(e)TRCA-R-2

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Acknowledgements

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ssvepanalysistoolbox-0.0.3.tar.gz (75.2 kB view details)

Uploaded Source

Built Distribution

SSVEPAnalysisToolbox-0.0.3-py3-none-any.whl (107.3 kB view details)

Uploaded Python 3

File details

Details for the file ssvepanalysistoolbox-0.0.3.tar.gz.

File metadata

  • Download URL: ssvepanalysistoolbox-0.0.3.tar.gz
  • Upload date:
  • Size: 75.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for ssvepanalysistoolbox-0.0.3.tar.gz
Algorithm Hash digest
SHA256 a82f9ba8cfd88b7a74c63483c290a9e126ca444133442ef7d061703f08b78e0b
MD5 7c3fc0764e00f5bb7a27acdd0387da6a
BLAKE2b-256 593e05bb611c875c21f802515472176e399e0df2d3337514dee32e9e650962ba

See more details on using hashes here.

File details

Details for the file SSVEPAnalysisToolbox-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for SSVEPAnalysisToolbox-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 006427a7ab56114e779692e331bc8751f4a2456813cb69a9a907aca98c5615bf
MD5 73209f58bdc9560eaa39f50a69dc10ba
BLAKE2b-256 b4474b47c43ad6bc496dd1c5362bdeb1c100c5ecf5db1936ff634ca820ff67a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page