Skip to main content

SSparseMatrix package based on SciPy sparse matrices.

Project description

Sparse matrices with named rows and columns

PyPI PyPI - Downloads

PePy:
Downloads Downloads Downloads

Introduction

This Python package provides the class SSparseMatrix the objects of which are sparse matrices with named rows and columns.

We can say the package attempts to cover as many as possible of the functionalities for sparse matrix objects that are provided by R’s library Matrix. (R is a implementation of S. S introduced named data structures for statistical computations, [RB1], hence the name SSparseMatrix.)

The package builds on top of the scipy sparse matrices. (The added functionalities though are general -- other sparse matrix implementations could be used.)

Here is a list of functionalities provided for SSparseMatrix:

  • Sub-matrix extraction by row and column names:
    • Single element access
    • Subsets of row names and column names
  • Slices (with integers)
  • Row and column names propagation for dot products with:
    • Lists
    • Dense vectors (numpy.array)
    • scipy sparse matrices
    • SSparseMatrix objects
  • Row and column sums
    • Vector form
    • Dictionary form
  • Transposing
  • Representation:
    • Tabular, matrix form ("pretty printing")
    • String and repr forms
  • Row and column binding of SSparseMatrix objects
  • "Export" functions
    • Triplets
    • Row-dictionaries
    • Column-dictionaries
    • Wolfram Language full form representation

The full list of features and development status can be found in the org-mode file SSparseMatrix-work-plan.org.

This package more or less follows the design of the Mathematica package SSparseMatrix.m, [AAp1], and the corresponding paclet [AAp3].

The usage examples below can be also run through the file "examples.py".

Remark: The functionalities provided by package, "SSparseMatrix", are fundamental for the packages "SparseMatrixRecommender", [AAp4], and "LatentSemanticAnalyzer", [AAp5].

Usage in other packages

The class SSparseMatrix is foundational in the packages SparseMatrixRecommender and LatentSemanticAnalyzer. (The implementation of those packages was one of the primary motivations to develop SSparseMatrix.)

The package RandomSparseMatrix can be used to generate random sparse matrices (SSparseMatrix objects.)


Installation

Install from GitHub

pip install -e git+https://github.com/antononcube/Python-packages.git#egg=SSparseMatrix-antononcube\&subdirectory=SSparseMatrix

From PyPi

pip install SSparseMatrix

Setup

Import the package:

from SSparseMatrix import *

The import command above is equivalent to the import commands:

from SSparseMatrix.SSparseMatrix import SSparseMatrix
from SSparseMatrix.SSparseMatrix import make_s_sparse_matrix
from SSparseMatrix.SSparseMatrix import is_s_sparse_matrix
from SSparseMatrix.SSparseMatrix import column_bind

Creation

Create a sparse matrix with named rows and columns (a SSparseMatrix object):

mat = [[1, 0, 0, 3], [4, 0, 0, 5], [0, 3, 0, 5], [0, 0, 1, 0], [0, 0, 0, 5]]
smat = SSparseMatrix(mat)
smat.set_row_names(["A", "B", "C", "D", "E"])
smat.set_column_names(["a", "b", "c", "d"])
<5x4 SSparseMatrix (sparse matrix with named rows and columns) of type '<class 'numpy.int64'>'
	with 8 stored elements in Compressed Sparse Row format, and fill-in 0.4>

Print the created sparse matrix:

smat.print_matrix()
===================================
  |       a       b       c       d
-----------------------------------
A |       1       .       .       3
B |       4       .       .       5
C |       .       3       .       5
D |       .       .       1       .
E |       .       .       .       5
===================================

Another way to create using the function make_s_sparse_matrix:

ssmat=make_s_sparse_matrix(mat)
ssmat
<5x4 SSparseMatrix (sparse matrix with named rows and columns) of type '<class 'numpy.int64'>'
	with 8 stored elements in Compressed Sparse Row format, and fill-in 0.4>

Structure

The SSparseMatrix objects have a simple structure. Here are the attributes:

  • _sparseMatrix
  • _rowNames
  • _colNames
  • _dimNames

Here are the methods to "query" SSparseMatrix objects:

  • sparse_matrix()
  • row_names() and row_names_dict()
  • column_names() and column_names_dict()
  • shape()
  • dimension_names()

SSparseMatrix over-writes the methods of scipy.sparse.csr_matrix that might require the handling of row names and column names.

Most of the rest of the scipy.sparse.csr_matrix methods are delegated to the _sparseMatrix attribute.

For example, for a given SSparseMatrix object smat the dense version of smat's sparse matrix attribute can be obtained by accessing that attribute first and then using the method todense:

print(smat.sparse_matrix().todense())
[[1 0 0 3]
 [4 0 0 5]
 [0 3 0 5]
 [0 0 1 0]
 [0 0 0 5]]

Alternatively, we can use the "delegated" form and directly invoke todense on smat:

print(smat.todense())
[[1 0 0 3]
 [4 0 0 5]
 [0 3 0 5]
 [0 0 1 0]
 [0 0 0 5]]

Here is another example showing a direct application of the element-wise operation sin through the scipy.sparse.csr_matrix method sin:

smat.sin().print_matrix(n_digits=20)
===================================================================================
  |                   a                   b                   c                   d
-----------------------------------------------------------------------------------
A |  0.8414709848078965                   .                   .  0.1411200080598672
B | -0.7568024953079282                   .                   . -0.9589242746631385
C |                   .  0.1411200080598672                   . -0.9589242746631385
D |                   .                   .  0.8414709848078965                   .
E |                   .                   .                   . -0.9589242746631385
===================================================================================

Representation

Here the function print uses the string representation of SSparseMatrix object:

print(smat)
  ('A', 'a')	1
  ('A', 'd')	3
  ('B', 'a')	4
  ('B', 'd')	5
  ('C', 'b')	3
  ('C', 'd')	5
  ('D', 'c')	1
  ('E', 'd')	5

Here we print the representation obtained with repr:

print(repr(smat))
<5x4 SSparseMatrix (sparse matrix with named rows and columns) of type '<class 'numpy.int64'>'
	with 8 stored elements in Compressed Sparse Row format, and fill-in 0.4>

Here is the matrix form ("pretty printing" ):

smat.print_matrix()
===================================
  |       a       b       c       d
-----------------------------------
A |       1       .       .       3
B |       4       .       .       5
C |       .       3       .       5
D |       .       .       1       .
E |       .       .       .       5
===================================

The method triplets can be used to obtain a list of (row, column, value) triplets:

smat.triplets()
[('A', 'a', 1),
 ('A', 'd', 3),
 ('B', 'a', 4),
 ('B', 'd', 5),
 ('C', 'b', 3),
 ('C', 'd', 5),
 ('D', 'c', 1),
 ('E', 'd', 5)]

The method row_dictionaries gives a dictionary with keys that are row-names and values that are column-name-to-matrix-value dictionaries:

smat.row_dictionaries()
{'A': {'a': 1, 'd': 3},
 'B': {'a': 4, 'd': 5},
 'C': {'b': 3, 'd': 5},
 'D': {'c': 1},
 'E': {'d': 5}}

Similarly, the method column_dictionaries gives a dictionary with keys that are column-names and values that are row-name-to-matrix-value dictionaries:

smat.column_dictionaries()
{'a': {'A': 1, 'B': 4},
 'b': {'C': 3},
 'c': {'D': 1},
 'd': {'A': 3, 'B': 5, 'C': 5, 'E': 5}}

Multiplication

Multiply with the transpose and print:

ssmat2 = ssmat.dot(smat.transpose())
ssmat2.print_matrix()
===========================================
  |       A       B       C       D       E
-------------------------------------------
0 |      10      19      15       .      15
1 |      19      41      25       .      25
2 |      15      25      34       .      25
3 |       .       .       .       1       .
4 |      15      25      25       .      25
===========================================

Multiply with a list-vector:

smat3 = smat.dot([1, 2, 1, 0])
smat3.print_matrix()
===========
  |       0
-----------
A |       1
B |       4
C |       6
D |       1
E |       .
===========

Remark: The type of the .dot argument can be:

  • SSparseMatrix
  • list
  • numpy.array
  • scipy.sparse.csr_matrix

Slices

Single element access:

print(smat["A", "d"])
print(smat[0, 3])
3
3

Get sub-matrix of rows using row names:

smat[["A", "D", "B"], :].print_matrix()
===================================
  |       a       b       c       d
-----------------------------------
A |       1       .       .       3
D |       .       .       1       .
B |       4       .       .       5
===================================

Get sub-matrix using row indices:

smat[[0, 3, 1], :].print_matrix()
===================================
  |       a       b       c       d
-----------------------------------
A |       1       .       .       3
D |       .       .       1       .
B |       4       .       .       5
===================================

Get sub-matrix with columns names:

smat[:, ['a', 'c']].print_matrix()
===================
  |       a       c
-------------------
A |       1       .
B |       4       .
C |       .       .
D |       .       1
E |       .       .
===================

Get sub-matrix with columns indices:

smat[:, [0, 2]].print_matrix()
===================
  |       a       c
-------------------
A |       1       .
B |       4       .
C |       .       .
D |       .       1
E |       .       .
===================

Remark: The current implementation of scipy (1.7.1) does not allow retrieval of sub-matrices by specifying both row and column ranges or slices.

Remark: "Standard" slices with integers also work.


Row and column sums

Row sums and dictionary of row sums:

print(smat.row_sums())
print(smat.row_sums_dict())
[4, 9, 8, 1, 5]
{'A': 4, 'B': 9, 'C': 8, 'D': 1, 'E': 5}

Column sums and dictionary of column sums:

print(smat.column_sums())
print(smat.column_sums_dict())
[5, 3, 1, 18]
{'a': 5, 'b': 3, 'c': 1, 'd': 18}

Column and row binding

Column binding

Here we create another SSparseMatrix object:

mat2=smat.sparse_matrix().transpose()
smat2 = SSparseMatrix(mat2, row_names=list("ABCD"), column_names="c")
smat2.print_matrix()
===========================================
  |      c0      c1      c2      c3      c4
-------------------------------------------
A |       1       4       .       .       .
B |       .       .       3       .       .
C |       .       .       .       1       .
D |       3       5       5       .       5
===========================================

Here we column-bind two SSparseMatrix objects:

smat[list("ABCD"), :].column_bind(smat2).print_matrix()
===========================================================================
  |       a       b       c       d      c0      c1      c2      c3      c4
---------------------------------------------------------------------------
A |       1       .       .       3       1       4       .       .       .
B |       4       .       .       5       .       .       3       .       .
C |       .       3       .       5       .       .       .       1       .
D |       .       .       1       .       3       5       5       .       5
===========================================================================

Remark: If during column-binding some column names are duplicated then to the column names of both matrices are added suffixes that designate to which matrix each column belongs to.

Row binding

Here we rename the column names of smat to be the same as smat2:

smat3 = smat.copy()
smat3.set_column_names(smat2.column_names()[0:4])
smat3 = smat3.impose_column_names(smat2.column_names())
smat3.print_matrix()
===========================================
  |      c0      c1      c2      c3      c4
-------------------------------------------
A |       1       .       .       3       .
B |       4       .       .       5       .
C |       .       3       .       5       .
D |       .       .       1       .       .
E |       .       .       .       5       .
===========================================

Here we row-bind smat2 and smat3:

smat2.row_bind(smat3).print_matrix()
=============================================
    |      c0      c1      c2      c3      c4
---------------------------------------------
A.1 |       1       4       .       .       .
B.1 |       .       .       3       .       .
C.1 |       .       .       .       1       .
D.1 |       3       5       5       .       5
A.2 |       1       .       .       3       .
B.2 |       4       .       .       5       .
C.2 |       .       3       .       5       .
D.2 |       .       .       1       .       .
E.2 |       .       .       .       5       .
=============================================

Remark: If during row-binding some row names are duplicated then to the row names of both matrices are added suffixes that designate to which matrix each row belongs to.


In place computations

  • The methods for setting row- and column-names are "in place" methods -- no new SSparseMatrix objects a created.

  • The dot product, arithmetic, and transposing methods have an optional argument whether to do computations in place or not.

    • The optional argument is copy, which corresponds to argument with the same name and function in scipy.sparse.
    • By default, the computations are not in place: new objects are created.
    • I.e. copy=True default.
  • The class SSparseMatrix has the method copy() that produces deep copies when invoked.


Unit tests

The unit tests (so far) are broken into functionalities; see the folder ./tests. Similar unit tests are given in [AAp2].


References

Articles

[AA1] Anton Antonov, "RSparseMatrix for sparse matrices with named rows and columns", (2015), MathematicaForPrediction at WordPress.

[RB1] Richard Becker, “A Brief History of S”, (2004).

Packages

[AAp1] Anton Antonov, SSparseMatrix.m, (2018), MathematicaForPrediction at GitHub.

[AAp2] Anton Antonov, SSparseMatrix Mathematica unit tests, (2018), MathematicaForPrediction at GitHub.

[AAp3] Anton Antonov, SSparseMatrix WL paclet, (2023), Wolfram Language Paclet Repository.

[AAp4] Anton Antonov, SparseMatrixRecommender Python package, (2021), PyPI.org/antononcube.

[AAp4] Anton Antonov, LatentSemanticAnalyzer Python package, (2021), PyPI.org/antononcube.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SSparseMatrix-0.3.3.tar.gz (18.8 kB view details)

Uploaded Source

Built Distribution

SSparseMatrix-0.3.3-py3-none-any.whl (14.2 kB view details)

Uploaded Python 3

File details

Details for the file SSparseMatrix-0.3.3.tar.gz.

File metadata

  • Download URL: SSparseMatrix-0.3.3.tar.gz
  • Upload date:
  • Size: 18.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for SSparseMatrix-0.3.3.tar.gz
Algorithm Hash digest
SHA256 d610bcf92cb9c990d961fba5eb29620e76c37b1592e4074c96b9d8b079e12e30
MD5 e586a032b57b2711b23b3e70a445ab23
BLAKE2b-256 54840167a1f6256759fb3d501889fbceebd80c128e2a53c55b81723ca96c35ba

See more details on using hashes here.

File details

Details for the file SSparseMatrix-0.3.3-py3-none-any.whl.

File metadata

File hashes

Hashes for SSparseMatrix-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 3109244c428c7928b5dd9645a33dbc89e670a41a5ea68c01df31c87d04dacffb
MD5 5b798ee33924c328d9d10531cb0dc8bb
BLAKE2b-256 c67b14ba5c99db054317d92188a9fbb08867bd0425cef1f8aef66ec761f9a66e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page