Skip to main content

STACCI for STCase

Project description

STACCI for STCase

Installation Instructions

  1. Clone the repository to your local machine and enter the repository in the command line interface.

  2. Use conda to create a new environment according to environment.yml

    conda env create -f environment.yml

    The purpose of this step is to install python, cudatoolkit and cudnn, where the versions of cudatoolkit and cudnn must correspond. The version in the .yml file is applicable to hosts with cuda ≥ 11.3. For servers with cuda lower than this version, consider upgrading cuda or finding the corresponding cudatoolkit version and cudnn version.

    Specifying the python version is to facilitate the next step to find the corresponding version of torch_geometric related packages.

    If the hardware does not support GPU usage, you can establish a new environment with the following command:

    conda env create -f environment_cpu.yml

  3. In the new environment, install the specified version of pytorch and torch_geometric related packages

    Don't forget to activate the env using conda activate stcase

    • First install pytorch related packages

      pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113

      The version of pytorch should be suitable for the version of cudatoolkit. The above command is from the pytorch official website and is the latest version that cuda 11.3 can install.

      Those with different cuda versions can find the appropriate command on this website.

      To install PyTorch-related packages without GPU hardware capabilities, utilize the following command:

      pip install torch==1.12.1+cpu torchvision==0.13.1+cpu torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cpu

    • Then install torch_geometric related packages

      There are five torch_geometric related packages: torch_spline_conv, torch_sparse, torch_scatter, torch_cluster, pyg_lib, of which pyg_lib should be installed last.

      The version of the above packages is related to the system architecture, operating system, Python version, CUDA version and PyTorch version. If the package version of each step is consistent with the tutorial, you can directly download the wheel files in one of the following two links for installation, depending on the presence of GPU hardware:

      Link: GPU wheels Password: 8rvh or Link: CPU wheels Password: krt6

      pip install torch_spline_conv-1.2.1+pt112cu113-cp310-cp310-linux_x86_64.whl
      pip install torch_sparse-0.6.16+pt112cu113-cp310-cp310-linux_x86_64.whl
      pip install torch_scatter-2.1.0+pt112cu113-cp310-cp310-linux_x86_64.whl
      pip install torch_cluster-1.6.0+pt112cu113-cp310-cp310-linux_x86_64.whl
      pip install pyg_lib-0.3.0+pt112cu113-cp310-cp310-linux_x86_64.whl
      

      or

      pip install torch_spline_conv-1.2.1+pt112cpu-cp310-cp310-linux_x86_64.whl
      pip install torch_sparse-0.6.16+pt112cpu-cp310-cp310-linux_x86_64.whl
      pip install torch_scatter-2.1.0+pt112cpu-cp310-cp310-linux_x86_64.whl
      pip install torch_cluster-1.6.0+pt112cpu-cp310-cp310-linux_x86_64.whl
      pip install pyg_lib-0.3.0+pt112cpu-cp310-cp310-linux_x86_64.whl
      

      Otherwise, please download the appropriate wheel file from this website, and note that the above installation commands should also be modified accordingly.

    • Finally, install torch_geometric:

      pip install torch_geometric

  4. Install mclust in R environment

    Enter R in bash to enter the command line interactive interface and install mclust with this command: install.packages("mclust") During the installation process, select CRAN mirror: China (Beijing 3) [https].

    After the installation is done, enter the command library(mclust) to load. If the mclust logo is displayed, it means the installation is successful. You can press ctrl+d to exit R.

  5. pip install STACCI

Usage Instructions

After creating a new environment according to the installation instructions and installing the corresponding dependencies, place the .h5ad file of the dataset in the specified file structure, specifically, the desired file structure of the dataset is as follows:

{root}
└── {dataset_path}
    └── {dataset}
        └── {h5_name}.h5ad

{x} represents the value of the variable x, and the four custom run result saving folders {generated_path}, {embedding_path}, {model_path}, {result_path} will be automatically created in the {root} folder.

After setting up the file structure, execute the following command:

python test.py --root {root} --ds-dir {dataset_path} --ds-name {dataset} --h5-name {h5_name} --target-types {target_type_list} --gpu {gpu_id} [--use-gpu] --n-nei {#neighborhood} --n-clusters {#sub-regions} [--alpha {alpha}] --label-col-name {label_column_name} --region-col-name {region_column_name}

An example command is:

python test.py --root ./tests/ --ds-dir datasets/ --ds-name 10xv4_n0_v3 --h5-name 10xv4_n0_v3_stringent_self --target-types Tumor_major --gpu 1 --use-gpu --n-nei 12 --n-clusters 4 --alpha 0.75 --label-col-name cell_type --region-col-name Region

The complete file structure of the repository including the example dataset should be as follows:

STACCI/
├── README.md
├── pyproject.toml
├── environment.yml
├── .gitignore
├── test.py
├── STACCI/
│   ├── __init__.py
│   ├── data_handler.py
│   ├── model.py
│   ├── pipeline.py
│   ├── trainer.py
│   └── utils.py
└── tests/
    └── datasets/
        └── 10xv4_n0_v3/
            └── 10xv4_n0_v3_stringent_self.h5ad

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

stacci-0.9.4.tar.gz (40.0 kB view details)

Uploaded Source

Built Distribution

stacci-0.9.4-py2.py3-none-any.whl (40.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file stacci-0.9.4.tar.gz.

File metadata

  • Download URL: stacci-0.9.4.tar.gz
  • Upload date:
  • Size: 40.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for stacci-0.9.4.tar.gz
Algorithm Hash digest
SHA256 7969a368239117f8219c0a78825910f14ea2f1d7787a7a4a33a4c7c213e3dcd5
MD5 70cc5e3202c1deef823c032460f74b30
BLAKE2b-256 ae12ae674cc976d8311d23f012848507e8bb908d8713db906864928362fb724e

See more details on using hashes here.

File details

Details for the file stacci-0.9.4-py2.py3-none-any.whl.

File metadata

  • Download URL: stacci-0.9.4-py2.py3-none-any.whl
  • Upload date:
  • Size: 40.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for stacci-0.9.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 dee83702c2bee2f9b4ca9f722b9267db4661996b7addd2a0146da611f99ef1ec
MD5 a75dffc512944e8edc098773ab71a2f3
BLAKE2b-256 ff1be1ed113831f6a90959c659eb971ae8dfe3a50ea75fa64cf6d317d1a2d370

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page