Skip to main content

A small package including a one-dimensional well-balanced Shallow Water Equations solver.

Project description

Shallow Water Equations Solver

This package provides a well-balanced solver for the one-dimensional Saint-Venant equations, based on the principles outlined in this paper and this presentation.

Installation

The package is available through pip, and may be installed via:

pip install SWE_Solver

Main Usage

To utilize this package, you can call the plotSWE function with the following parameters:

h, u = plotSWE(B, h0, u0, Nx, tEnd, timePoints, g=1, method='C')

Parameters:

  • B (callable): Bottom topography function. This function defines the topographic profile and should take spatial coordinates as input and return the bottom elevation at those coordinates.
  • h0 (array): Initial water height profile. This should be an array of length Nx, representing the initial water height at different spatial locations.
  • u0 (array): Initial water velocity profile. Similar to h0, this should be an array of length Nx, representing the initial water velocity at different spatial locations.
  • Nx (int): Number of spatial grid points.
  • tEnd (float): End time of the simulation. The simulation starts at time t=0.
  • timePoints (list): List of time points at which you want to visualize the results.
  • g (float, optional): Gravitational constant. Default is 1.
  • method (str, optional): Method selection ('A', 'B' or 'C'). Default is 'C'.

Returns:

  • h (array): Array containing the water height profile at the final time point.
  • u (array): Array containing the water velocity profile at the final time point.

Pre-Coded Examples

A number of pre-coded examples are available through the library, through the function exampleSWE.

h, u = exampleSWE(state="still_flat", method='C')

Parameters

  • state (String): Name of the example. Has to be one of "still_flat" (Constant height, zero velocity, flat bottom), "still_tilted" (Constant total height, zero velocity, tilted bottom),, "still_tilted_pert" (Perturbed constant total height, perturbed zero velocity, tilted bottom), "moving_flat" (Constant height, constant velocity, flat bottom), "moving_tilted" (Constant total height, constant velocity, tilted bottom), "evolving_wave" (Step function for height, constant discharge, flat bottom), "standing_wave" (Final profile of "evolving_wave" for method 'C', representing an equilibrium), "standing_wave_pert" (Final profile of "evolving_wave" for method 'C', with a perturbation), "forming_collision" (Constant water height, positive velocity on the right, negative velocity on the left, flat bottom), "spike_flattening" (Water height given by a Gaussian, zero velocity, flat bottom), "over_bump" (Constant total water height, constant velocity, bottom given by a Gaussian). Defaults to "still_flat".
  • method (String): Name of the method used. Has to be one of 'A', 'B', 'C'. Defaults to 'C'.

Returns

  • h (array): Array containing the water height profile at the final time point.
  • u (array): Array containing the water velocity profile at the final time point.

Example

from SWE_Solver import plotSWE
from math import sqrt
from scipy.special import erf

Nx = 50
B = lambda x: 1
f = lambda T: 1 + sqrt(3) / (1 - erf(-0.5 / 0.1)) * (erf((T - 0.5) / 0.1) - erf (-0.5 / 0.1))
h0 = [f(_/ (Nx-1)) for _ in range(Nx)]
u0 = [2.0 / h0[_] for _ in range(Nx)]
_ = plotSWE(B, h0, u0, Nx, tEnd=1.0, timePoints=[0.0, 0.1, 0.5, 1.0])

The above is equivalent to the simple example given by

from SWE_Solver import exampleSWE

_ = exampleSWE("evolving_wave", 'C')

In this example, we're using a spatial grid with 50 points, running the simulation up to t=1 seconds, and visualizing the results at times 0.0, 0.1, 0.5 and 1.0 seconds, with gravitational constant g=1 (default value) and using method='C' (default value).

This produces the result in the following figure.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SWE_Solver-0.1.6.tar.gz (14.6 kB view details)

Uploaded Source

Built Distribution

SWE_Solver-0.1.6-py3-none-any.whl (14.5 kB view details)

Uploaded Python 3

File details

Details for the file SWE_Solver-0.1.6.tar.gz.

File metadata

  • Download URL: SWE_Solver-0.1.6.tar.gz
  • Upload date:
  • Size: 14.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for SWE_Solver-0.1.6.tar.gz
Algorithm Hash digest
SHA256 bc13597d339fbc1d2ebad4dda6c4951a9345beb4ff7957f1ba458eecf6830f3e
MD5 6a710f7114319fd46c8bfe746a730fbb
BLAKE2b-256 1aa877bb8d8a9f50313827d4b3107034c70cb6e6229cf4bb08eb1e4a8c7ff146

See more details on using hashes here.

File details

Details for the file SWE_Solver-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: SWE_Solver-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 14.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for SWE_Solver-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 6fadbc03f43c7bef84d0e0bd06baf30e4103cb646cbb4cd7bda6950046e066dc
MD5 b33167602363cda096bad23e1a71baa9
BLAKE2b-256 6f0d05924eeee07773c41d273eb981c0bdfea5b47b7b586cc3c0a8e3baf1aacd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page