Skip to main content

Library for Silicon Photomultipliers simulation.

Project description

SimSiPM

GitHub release

GCC AppleClang

GitHub issues GitHub last commit GitHub license

Downloads Downloads

Table of contents

  1. Introduction
  2. Features
  3. Installation
  1. C++ Basic use
  2. Python Basic use
  3. Advanced use
  1. Contributing

Introduction

SimSiPM is a C++ library providing a set of object-oriented tools with all the functionality needed to describe and simulate Silicon PhotonMultipliers (SiPM) sensors. It can be used to simulate SiPM signals in order to have a detailed description of a detector or it can be used to investigate how different SiPM parameters affect the detector.

SimSiPM has beed developed followind FCCSW C++ rules and guidelines and it is focused on SiPM simulation for high-energy physics and particle physics experiments however it can be used to simulate any kind of experiment involving SiPM devices.

SimSiPM does not have any external dependancy making it the perfect candidate to be used in an already existing environment (Geant4 or DD4HEP) or as "stand-alone".

Features

  • Easy to use:
    • Straight forward installation without external dependancies
    • Easy to use OOP paradigm
    • Python implementation
  • Description of SiPM sensors:
    • Based on datasheet values or measurable quantities
    • High level of customization allowing to describe a wide range of use cases
  • High performance:
    • Fast signal generation
    • Low memory footprint

Installation

SimSiPM has not external dependancies other than CMake and optionally Pybind11.

C++

SimSiPM can be installed using the standard CMake workflow:

# In SimSiPM directory
cmake -B build -S .
make -C build
make -C build install

Installation directory can be specified with -DCMAKE_INSTALL_PREFIX variable.
Python bindings can be installed in the default python site-packages path by adding the variable -DCOMPILE_PYTHON_BINDINGS=ON but this requires Pybind11 to be installed.

Python

It is also possible to install only the python version via pip but performance might not be as good as the source code version:

pip install SiPM

C++ basic use

SiPMProperties

SiPMProperties object stores SiPM parameters

#include "SiPMProperties.h"
using namespace sipm;

// Create a SiPMProperties object
SiPMProperties myProperties;

// Edit some parameters
myProperties.setDcr(250e3);           // Using proper setter
myProperties.setPropery("Xt",0.03);   // Using parameter name

SiPMSensor

SiPMSensor object is used to generate signals

#include "SiPMProperties.h"
using namespace sipm;

// Create a SiPMSensor object
SiPMSensor mySensor(myProperties);

// Change parameters
mySensor.properties().setAp(0.01);    // Using proper getter/setter
mySensor.setProperty("Pitch", 25);    // Using parameter name

Input and simulation

Input of the simulation is either the arriving time of a photon on the SiPM surface or both the arriving time of the photon and its wavelength.

It is possible to add individual photons in a loop

mySensor.resetState();
for(...){
  // Generate times for photons
  mySensor.addPhoton(time);    // Appends a single photon (time is in ns)
}
mySensor.runEvent();          // Runs the simulation

It is also possible to add all photons at once

std::vector<double> times = {13.12, 25.45, 33.68};
mySensor.resetState();
mySensor.addPhotons(times);    // Sets photon times (times are in ns) (not appending)
mySensor.runEvent();          // Runs the simulation

Signal output and signal features

After running the simulation the signal can be retrived:

SiPMAnalogSignal mySignal = mySensor.signal();

double integral = signal.integral(5,250,0.5);   // (intStart, intGate, threshold)
double peak = signal.peak(5,250,0.5);   // (intStart, intGate, threshold)
double toa = signal.toa(5,250,0.5);   // (intStart, intGate, threshold)
double tot = signal.tot(5,250,0.5);   // (intStart, intGate, threshold)

// It is possible to iterate throwg an analog signal
for(int i=0;i<mySignal.size();++i){
  // Do something with mySignal[i]
}

// It is possible to convert an analog signal to a simple vector
std::vector<double> waveform = mySignal.waveform();

Complete event loop

A typical event loop would look like:

// Create sensor and set parameters
SiPMProperties myProperties;
SiPMSensor mySensor(myProperties);
// ...

// Store results in here
std::vector<double> integral(NEVENTS);
// peak
// ...

for(int i=0;i<NEVENTS;++i){
  // Generate photons times accordingly
  // to your experimental setup
  mySensor.resetState();
  mySensor.addPhotons(times);
  mySensor.runEvent();

  SiPMAnalogSignal mySignal = mySensor.signal();

  integral[i] = signal.integral(10,250,0.5);
  // peak
  // ...
}

Python basic use

Python bindings are generated using Pybind11 so the usage is very similar to C++ but with python syntax.

from SiPM import SiPMSensor, SiPMProperties

myProperties = SiPMProperties()
myProperties.setDcr(250e3)
myProperties.seProperty("Xt",0.03)

mySensor = SiPMSensor(myProperties)

mySensor.resetState()
mySensor.addPhotons([13.12, 25.45, 33.68])
mySensor.runEvent()

mySignal = mySensor.signal()
integral = mySignal.integral(10,250,0.5)

Advanced use

PDE

No Pde

Tracking a large number of photons is a very heavy task and since most of photons will not be detected due to photon detection efficiency (PDE) it would be a waste of time.

By default SiPM sensors have PDE set to 100% so every photon is converted to a photoelectron and is detected. In this way it is possible to calculate photon statistic ahead and track only the photons that will be detected.

Simple PDE

It is possible to account for PDE in the simulation using a fixed value of PDE for all photons. In this case the probability to detect a photon is proportional to PDE.

// Set in SiPMProperties
myProperties.setPdeType(sipm::SiPMProperties::PdeType::kSimplePde);
myProperties.setPde(0.27);

// Change setting of a sensor
mySensor.properties().setPdeType(sipm::SiPMProperties::PdeType::kSimplePde);
mySensor.setProperty("Pde",0.27); // or mySensor.properties().setPde(0.27);

To revert back at default setting of 100% PDE use setPdeType(sipm::SiPMProperties::PdeType::kSimplePde)

Spectral PDE

In most SiPM sensors PDE strongly depends on photon wavelength. In some cases it might be necessary to consider the spectral response of the SiPM for a more accurate simulation. This can be done by feeding the SiPM settings with two arrays containing photon wavelengths and corresponding PDEs.

In this case it is also necessary to input photon wavelength along with its time.

std::vector<double> wlen = {300, 400, 500, 600, 700, 800};
std::vector<double> pde  = {0.01, 0.20, 0.33, 0.27, 0.15, 0.05};

myProperties.setPdeType(sipm::SiPMProperties::PdeType::kSpectrumPde);
myProperties.setPdeSpectrum(wlen,pde);

// or using a std::map
// std::map<double,double> wlen_pde = {{300, 0.01}, {400, 0.20}, {500, 0.33}, ...};
// myProperties.setPdeSpectrum(wlen_pde);

// Adding photons to the sensor
mySensor.addPhoton(photonTime, photonWlen);
// or mySensor.addPhotons(photonTimes, photonWlens);

The values inserted by the user are linearly interpolated to calculate the PDE for each wavelength so it is better to add a reasonable number of values.

Hit distribution

By default photoelectrons are distributed uniformly on the surface of the SiPM. In most cases this assumption resembles what happens in a typical setup but sometimes the geometry and optical characteristics of the setup lead to an unheaven distribution of the light on the sensor's surface.

Uniform hit distribution

This is the default setting. Each SiPM cell has the same probability to be hitted.

myPropertie.setHitDistribution(sipm::SiPMProperties::HitDistribution::kUniform);

Circular hit distribution

In this case 95% of photons are placed in a circle centered in the sensor and with a diameter that is the same as the sensor's side lenght. The remaining 5% is distributed uniformly on the sensor.

myPropertie.setHitDistribution(sipm::SiPMProperties::HitDistribution::kCircle);

Gaussian hit distribution

In this case 95% of the photons are distributed following a gaussian distribution centered in the sensor. The remaining 5% is distributed uniformly on the sensor.

myPropertie.setHitDistribution(sipm::SiPMProperties::HitDistribution::kGaussian);

Contributing

SimSiPM is being developed in the contest of FCCSW and IDEA Dual-Readout Calorimeter Software. I am the main responsible for developement and maintainment of this project. If you have a problem, find a BUG or have any suggestion feel free to open a GitHub Issue or to contact me.

Cite

Even thou SimSiPM has been used in simulations related to published articles, there is not yet an article about SimSiPM only. So when citing SimSiPM please use:

@manual{,
title = {{SimSiPM: a library for SiPM simulation}},
author = {Edoardo, Proserpio},
address = {Como, Italy},
year = 2021,
url = {https://github.com/EdoPro98/SimSiPM}
}

Contacts

Author: Edoardo Proserpio
Email: edoardo.proserpio@gmail.com (private)
Email: eproserpio@studenti.uninsubria.it (instiutional)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SiPM-1.2.3b0.tar.gz (20.0 kB view details)

Uploaded Source

Built Distributions

SiPM-1.2.3b0-pp37-pypy37_pp73-manylinux2010_x86_64.whl (233.6 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

SiPM-1.2.3b0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (167.9 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

SiPM-1.2.3b0-pp36-pypy36_pp73-manylinux2010_x86_64.whl (233.6 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

SiPM-1.2.3b0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (167.8 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

SiPM-1.2.3b0-cp39-cp39-manylinux2010_x86_64.whl (233.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

SiPM-1.2.3b0-cp39-cp39-macosx_11_0_arm64.whl (159.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

SiPM-1.2.3b0-cp39-cp39-macosx_10_9_x86_64.whl (168.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

SiPM-1.2.3b0-cp39-cp39-macosx_10_9_universal2.whl (322.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

SiPM-1.2.3b0-cp38-cp38-manylinux2010_x86_64.whl (233.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

SiPM-1.2.3b0-cp38-cp38-macosx_10_9_x86_64.whl (168.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

SiPM-1.2.3b0-cp37-cp37m-manylinux2010_x86_64.whl (232.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

SiPM-1.2.3b0-cp37-cp37m-macosx_10_9_x86_64.whl (161.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

SiPM-1.2.3b0-cp36-cp36m-manylinux2010_x86_64.whl (233.0 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

SiPM-1.2.3b0-cp36-cp36m-macosx_10_9_x86_64.whl (161.9 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

SiPM-1.2.3b0-cp35-cp35m-manylinux2010_x86_64.whl (233.0 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

SiPM-1.2.3b0-cp35-cp35m-macosx_10_9_x86_64.whl (161.7 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

File details

Details for the file SiPM-1.2.3b0.tar.gz.

File metadata

  • Download URL: SiPM-1.2.3b0.tar.gz
  • Upload date:
  • Size: 20.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0.tar.gz
Algorithm Hash digest
SHA256 a61abfd9016fc5ada08d9e5b2975f99793d85a06a5e21f9e13d33f62dc7ed909
MD5 0a3231a034e7c7af47c0d977765e42dd
BLAKE2b-256 5dc76bba4aac966e23a1e72a781c76ccdd5c566200c5f4dd3a6e950ac4069040

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 233.6 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 169eb2a216474ba48700a4040c2aea2f5c938e302ce1fb104057c06119ea98b4
MD5 6ae6716dd6c08e67bbaf2c71b21238a6
BLAKE2b-256 32619ef9d16ae5b3fe2ddafc6f10706534dbaaebd0d5ccf303efb13f28a594d7

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 167.9 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb03201887a6de75fd66dbabbe43a53a8ecf4830eb388932802566176d5eb0b9
MD5 70fdf3ee7038d8d6625ea22dcf5390b7
BLAKE2b-256 f000508c207a4ae80537a8fe340358406c4de01a4a3ada606a69d848552dca0e

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 233.6 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 319a03b1c709242a73f6e1833c47729e3068cc8b31eadb5c64b63e7deb03a74e
MD5 dfe83817a52e4b1df9d1943bb64338aa
BLAKE2b-256 b3b662ca52b413a065d7b9a514ce812539daf84229fd824a8bd01877056f99d1

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 167.8 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e6e1608853c47897397020e92eac39e59e0a06e24f0d57f1f55b3ba58525cf5
MD5 00f98ce18f8647f5ed52c692ffce3675
BLAKE2b-256 8a9f32f01d6d62c64070509bd4060d89b38cbfedc2bc7336198c09aead732175

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 233.7 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c7a69afef401243cf99464ec623b0fd33aff78df604829bccf3bb35867b3739a
MD5 f464f2abd72ccfd2c92f7f2066f2ec9f
BLAKE2b-256 1928362b9a0b2153349e07d2acc803b5c2696c5a67ee4b9e192fd9a3f1786d9d

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 159.8 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 de0323dbd4fe59b307cd25ca40a08f17c95d27f7b5c94a89112aef400dd058b0
MD5 1e5905eb415af15dbf23f1b111d80ce1
BLAKE2b-256 37eca556853fbd3672d2e0c102b23f72761fb9d3940b0d2fd0e7a0e496331d51

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 168.5 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a3a2cd947da78f522dbbdff0d0c3de22c44a51abdce838b277f1902c8e26325b
MD5 8c860845e1ffb9f58bb1c0588f0d00ed
BLAKE2b-256 6aee8e44ee31ed30ab7957d027bb4d16ee55767bd882244bb724d6bcd32161e0

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 322.3 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d6e1b75d970cd46ef01bbb90e8bc5c95b47130b78e2e5059aa886a65beab9f2d
MD5 df8f28d3cf8b9efde8feb0c195206193
BLAKE2b-256 7ad8b45d36a79ec1b39618696c16412576ec6aa111d83c303d40f30a9658bcad

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 233.6 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f3057c132313c9231b6ee7aa949e9b967b9f182d6769947fe8ac8171bdb31e65
MD5 e716dbddc292ee5bd61ac75a5841c186
BLAKE2b-256 bf689fcc4be2572a761250df736d150b222897ff6dab6505883d5c5ddc7a5ce0

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 168.2 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6eaa1243ab9fd330177e0103b193cb940b42328b3c1f311e5f0b60f8580179cb
MD5 90c2edacbffaf4e334977191f616f171
BLAKE2b-256 224aeaa6d632f455891e862b48604857e28d3e80e2a2fbd61bf6e1a2c68c1cba

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 232.7 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 842c27facf68623df073b1bbf53b2724af0238fbb9a3d50047c441bd17c7d237
MD5 1ff3307fa4841b54c804fe91c0e71ba1
BLAKE2b-256 578c240d3b291a9dba902d8b29b7c1c09b63f35068225747aa618c856ff90b56

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 161.9 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9e5f69365506f0163b96ac868d17e17b90d831c3763072dda067cd700fd5d446
MD5 02e0a103b40252898965939053fd9bc7
BLAKE2b-256 6b8a988220d48b17f52f6a23f20799071a0e5b8876278b2832a08c5b4e9ddca6

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 233.0 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9f3276062769869297dbc6be23f949371f570163f0bd93d59ad0a3cd5d7c8f46
MD5 63f1fcb4dd62c7b4e14b635efc2f61a3
BLAKE2b-256 1caecf3e367f29eae0f0389c2e7ab447c06071ebdefa2976e437dacc60c438a7

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 161.9 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 584cc40487967798e4aa3c7fcc05509ba20f59144be4c786fe36d67c1b0371a2
MD5 fb6d1d2d0aac22686b0c1e3537661689
BLAKE2b-256 2acf50c493f9f3e3840b613899f981a2d5bee38881b521fd155cbe34dffe6bfe

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 233.0 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 690e4e1386e902cd1a236bf25ba6f791adbb9e1df5955691766b0b045d181f53
MD5 22874c6a2ba08236263d1b1df584b6d6
BLAKE2b-256 0cca82609e47f4161f19a164c2fb58d629631d7371e02787bffbc86bc52a7ca9

See more details on using hashes here.

File details

Details for the file SiPM-1.2.3b0-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: SiPM-1.2.3b0-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 161.7 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for SiPM-1.2.3b0-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6f309a31616f3fc42785b45c6ad88c5028ad247e671b672bc7326bca5a9deefc
MD5 fbeb8013fa71ae4e9b34344c3c2ea79d
BLAKE2b-256 349176efc3b3cc95057a28b52cce3aa23f0efb051c5eca5f94446c1477d57c98

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page