Mutational signatures attribution and decomposition tool
Project description
SigProfilerAssignment
SigProfilerAssignment is a new mutational attribution and decomposition tool that performs the following functions:
- Attributing a known set of mutational signatures to an individual sample or multiple samples.
- Decomposing de novo signatures to COSMIC signature database.
- Attributing COSMIC database or a custom signature database to given samples.
The tool identifies the activity of each signature in the sample and assigns the probability for each signature to cause a specific mutation type in the sample. The tool makes use of SigProfilerMatrixGenerator, SigProfilerExtractor and SigProfilerPlotting.
Installs
for installing from PyPi in new conda environment
$ pip install SigProfilerAssignment
Installing this package : git clone this repo or download the zip file. Unzip the contents of SigProfilerExtractor-master.zip or the zip file of a corresponding branch.
$ cd SigProfilerAssignment-master
$ pip install .
Decomposes the De Novo Signatures into COSMIC Signatures and assigns COSMIC signatures into samples
Decompose Fit
from SigProfilerAssignment import Analyzer as Analyze
Analyze.decompose_fit(samples, output, signatures=None, signature_database=None,genome_build="GRCh37", make_decomposition_plots=True, collapse_to_SBS96=True,connected_sigs=True, verbose=False)
De Novo Fit
from SigProfilerAssignment import Analyzer as Analyze
Analyze.denovo_fit(samples, output, signatures=None, signature_database=None,genome_build="GRCh37", make_decomposition_plots=True, collapse_to_SBS96=True,connected_sigs=True, verbose=False)
Cosmic Fit
from SigProfilerAssignment import Analyzer as Analyze
Analyze.cosmic_fit(samples, output, signatures=None, signature_database=None,genome_build="GRCh37", make_decomposition_plots=True, collapse_to_SBS96=True,connected_sigs=True, verbose=False)
Parameters
| Parameter | Variable Type | Parameter Description |
|---|---|---|
| signatures | String | Path to a tab delimited file that contains the signaure table where the rows are mutation types and colunms are signature IDs. |
| activities | String | Path to a tab delimilted file that contains the activity table where the rows are sample IDs and colunms are signature IDs. |
| samples | String | Path to a tab delimilted file that contains the activity table where the rows are mutation types and colunms are sample IDs. |
| output | String | Path to the output folder. |
| genome_build | String | The genome type. Example: "GRCh37", "GRCh38", "mm9", "mm10". The default value is "GRCh37" |
| verbose | Boolean | Prints statements. Default value is False. |
SPA analysis Example
#import modules
import SigProfilerAssignment as spa
from SigProfilerAssignment import Analyzer as Analyze
#set directories and paths to signatures and samples
dir_inp = spa.__path__[0]+'/data/Examples/'
signatures = dir_inp+"Results_scenario_8/SBS96/All_Solutions/SBS96_3_Signatures/Signatures/SBS96_S3_Signatures.txt"
activities=dir_inp+"Results_scenario_8/SBS96/All_Solutions/SBS96_3_Signatures/Activities/SBS96_S3_NMF_Activities.txt"
samples=dir_inp+"Input_scenario_8/Samples.txt"
output="output_example/"
sigs= "COSMIC_v3_SBS_GRCh37_noSBS84-85.txt" #Custom Signature Database
#Analysis of SP Assignment
Analyze.cosmic_fit( samples, output, signatures=None,signature_database=sigs,genome_build="GRCh37", verbose=False)
Copyright
This software and its documentation are copyright 2022 as a part of the SigProfiler project. The SigProfilerAssignment framework is free software and is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
Contact Information
Please address any queries or bug reports to Raviteja Vangara at rvangara@health.ucsd.edu
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file SigProfilerAssignment-0.0.3.tar.gz.
File metadata
- Download URL: SigProfilerAssignment-0.0.3.tar.gz
- Upload date:
- Size: 3.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
41c13bc373dab367c25f7915aba42e6ea02389062e676fcf3ea9f8854044b396
|
|
| MD5 |
de5f2b642b87d6c0ec16589f6c18b093
|
|
| BLAKE2b-256 |
bc57ce6cc7421edcd9dbc25fd065ada3876b40244852290c9cf852e6dd3e2180
|
File details
Details for the file SigProfilerAssignment-0.0.3-py3-none-any.whl.
File metadata
- Download URL: SigProfilerAssignment-0.0.3-py3-none-any.whl
- Upload date:
- Size: 3.4 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.1
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
176c153def37486569be43f8461f340983636d2fcdd72a13675b5b57b38d0e48
|
|
| MD5 |
f370da16536f3d730211c46e6803a137
|
|
| BLAKE2b-256 |
d40a3ec44d6d52bb12aeed9b8190f3c556bf85bacdf54f26d8458eb80b184219
|