Skip to main content

SimPyLC PLC simulator, after its C++ big brother that has controlled industrial installations for more than 25 years now. ARDUINO CODE GENERATION ADDED!

Project description

=== Use the SimPyLC forum to share knowledge and ask questions about SimPyLC. ===

Screenshot of SimPyLC

Simulate your PLC controls and controlled systems to save lots of commissioning time

PLC?

Real world industrial control systems DO NOT consist of a bunch of communicating sequential processes. Semaphores, threads and priority jugling are far too error prone to control anything else but a model railway. Most control systems are surprisingly simple, consisting of only one program loop that nevertheless seems to do many things in parallel and with reliable timing. Such a control system is called a PLC (Programmable Logic Controller) and all major industries rely on it. PLC’s control trains, cranes, ships and your washing machine.

What SimPyLC is not

SimPyLC does not attempt to mimic any particular PLC instruction set or graphical representation like ladder logic or graphcet. There are enough tools that do. Anyone with experience in the field and an IT background knows that such archaic, bulky, hard to edit representations get in the way of clear thinking. By the way, graphcet is stateful per definition, which is the absolute enemy of safety. Though its bigger brother written in C++ according to exactly the same principles has been reliably controlling container cranes, grab unloaders and production lines for more than 20 years now, SimPyLC is FUNDAMENTALLY UNSUITABLE for controlling real world systems and should never be used as a definitive validation of anything. You’re only allowed to use SimPyLC under the conditions specified in the qQuickLicence that’s part of the distribution.

What it is

SimPyLC functionally behaves like a PLC or a set of interconnected PLC’s and controlled systems. It is a very powerful tool to gain insight in the behaviour of real time controls and controlled systems. It allows you to force values, to freeze time, to draw timing charts and to visualize your system. This is all done in a very simple and straightforward way. But make no mistake, simulating systems in this way has a track record of reducing months of commissioning time to mere days. SimPyLC is Form Follows Function at its best, it does what it has to do in a robust no-nonsense way. Its sourcecode is tiny and fully open to understanding. The accompanying document SimPyLCHowTo condenses decenia of practical experience in control systems in a few clear design rules that can save you lots of trouble and prevent accidents. In addition to this SimPyLC can generate C code for the Arduino processor boards.

Picture of Arduino Due

SimPyLC is able to generate C code for Arduino processor boards, making Arduino development MUCH easier

So

Are you looking for impressive graphics: Look elsewhere. Do you want to gain invaluable insight in real time behaviour of controls and control systems with minimal effort: Use SimPyLC, curse at its anachronistic simplicity and grow to love it more and more.

What’s new

  • Command line tool splc made available

  • Parameter attitude added to Thing.__call__ to be able to use rotation matrix rather than Euler angles

  • Document simpylc_howto updated and renamed to pothole case

  • Boolean circuits can now be switched by pressing the mousewheel

  • Registers can now be altered by rotating the mousewheel

  • Rocket example added with physically correct moment of inertia to demonstrate e.g. precession

  • Some parameters added and some renamed to make Thing.__call__ more consistent

  • Function tEva added to evaluate 3D tuples

  • Quaternion module added to accurately model rotational movement

  • Cones and Ellipsoids added

  • Optional moving camera added with synchroneous caching for accurate tracking

  • Pure Python controls added, just using the simulator to test without actual controlled hardware

REMARK: All complete Arduino examples were tested on the Arduino Due, since that’s the one I own, but they should run on the One with only slight I/O modifications (PWM instead of true analog output, using a shift register if you run short of I/O pins etc.)

Bugs fixed

  • No known bugs currently

Bug reports and feature requests are most welcome and will be taken under serious consideration on a non-committal basis

Installation

Installation for Windows, Linux and OSX is described in SimPyLCHowTo.

Usage

  1. Go to directory SimPyLC/simulations/oneArmedRobot

  2. Click on world.py or run world.py from the command line

GUI Operation

  • [LEFT CLICK] on a field or [ENTER] gets you into edit mode.

  • [LEFT CLICK] or [ENTER] again gets you out of edit mode and into forced mode, values coloured orange are frozen.

  • [RIGHT CLICK] or [ESC] gets you into released mode, values are thawed again.

  • [PGUP] and [PGDN] change the currently viewed control page.

  • [WHEEL PRESSED] on a marker field makes it 1, release makes it 0 again, both without freezing it.

  • [WHEEL ROTATION] changes the value of a register field, without freezing it.

For a test run of oneArmedRobot

  1. Enter setpoints in degrees for the joint angles (e.g. torAngSet for the torso of the robot) on the movement control page.

  2. After that set ‘go’ to 1 and watch what happens.

If you want to experiment yourself, read SimPyLCHowTo

A sample SimPyLC program

Coding is text oriented, enabling simple and fast editing, but functional behaviour resembles circuit logic, with elements like markers, timers, oneshots, latches and registers

Other packages you might like

qQuickLicence

This license governs use of the accompanying software (“Software”), and your use of the Software constitutes acceptance of this license.

You may use the Software for any commercial or noncommercial purpose, including distributing derivative works.

In return, it is required that you agree:

  1. Not to remove any copyright or other notices from the Software.

  2. That if you distribute the Software in source code form you do so only under this license (i.e. you must include a complete copy of this license with your distribution in a plain text file named QQuickLicence.txt), and if you distribute the Software solely in object form you only do so under a license that complies with this license.

  3. That the Software comes “as is”, with no warranties. None whatsoever. This means no express, implied or statutory warranty, including without limitation, warranties of merchantability or fitness for a particular purpose or any warranty of title or non-infringement. Also, you must pass this disclaimer on whenever you distribute the Software or derivative works.

  4. That neither Geatec Engineering nor any contributor to the Software will be liable for any of those types of damages known as indirect, special, consequential, or incidental related to the Software or this license, to the maximum extent the law permits, no matter what legal theory it’s based on. Also, you must pass this limitation of liability on whenever you distribute the Software or derivative works.

  5. That you will not use or cause usage of the Software in safety-critical situations under any circumstances.

  6. That if you sue anyone over patents that you think may apply to the Software for a person’s use of the Software, your license to the Software ends automatically.

  7. That your rights under this License end automatically if you breach it in any way.

  8. That all rights not expressly granted to you in this license are reserved.

Project details


Release history Release notifications | RSS feed

This version

3.9.5

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SimPyLC-3.9.5.linux-x86_64.tar.gz (3.9 MB view details)

Uploaded Source

Built Distribution

SimPyLC-3.9.5-py2.py3-none-any.whl (3.9 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file SimPyLC-3.9.5.linux-x86_64.tar.gz.

File metadata

  • Download URL: SimPyLC-3.9.5.linux-x86_64.tar.gz
  • Upload date:
  • Size: 3.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.0

File hashes

Hashes for SimPyLC-3.9.5.linux-x86_64.tar.gz
Algorithm Hash digest
SHA256 b665b22c0e304ecd2e9019bb39e8dbe11b5860c6e9ca2317d5225f07250573f9
MD5 ca5a301b89e58dbecb9ce5a2c5f97af2
BLAKE2b-256 30880c83e56769613611235f6621766d0fb3422f5cf4a0be9c7a921021c6b3e8

See more details on using hashes here.

File details

Details for the file SimPyLC-3.9.5-py2.py3-none-any.whl.

File metadata

  • Download URL: SimPyLC-3.9.5-py2.py3-none-any.whl
  • Upload date:
  • Size: 3.9 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.0

File hashes

Hashes for SimPyLC-3.9.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 23bc79e46d663dd4ae9700be84da2a469a7c95baf50d96c87623bf133cce21f9
MD5 9772b4c9f5375939712a5331dd3f9a43
BLAKE2b-256 0acc8767691da06cb01cbcf5dfc592ce1b88b0ee7dccf5990b490cbfbfe99ed4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page