Skip to main content

Portable mixed-precision BLAS-like vector math library for x86 and ARM

Project description

SimSIMD banner

Computing dot-products, similarity measures, and distances between low- and high-dimensional vectors is ubiquitous in Machine Learning, Scientific Computing, Geo-Spatial Analysis, and Information Retrieval. These algorithms generally have linear complexity in time, constant or linear complexity in space, and are data-parallel. In other words, it is easily parallelizable and vectorizable and often available in packages like BLAS (level 1) and LAPACK, as well as higher-level numpy and scipy Python libraries. Ironically, even with decades of evolution in compilers and numerical computing, most libraries can be 3-200x slower than hardware potential even on the most popular hardware, like 64-bit x86 and Arm CPUs. Moreover, most lack mixed-precision support, which is crucial for modern AI! The rare few that support minimal mixed precision, run only on one platform, and are vendor-locked, by companies like Intel and Nvidia. SimSIMD provides an alternative. 1️⃣ SimSIMD functions are practically as fast as memcpy. 2️⃣ Unlike BLAS, most kernels are designed for mixed-precision and bit-level operations. 3️⃣ SimSIMD compiles to more platforms than NumPy (105 vs 35) and has more backends than most BLAS implementations, and more high-level interfaces than most libraries.

Features

SimSIMD (Arabic: "سيمسيم دي") is a mixed-precision math library of over 200 SIMD-optimized kernels extensively used in AI, Search, and DBMS workloads. Named after the iconic "Open Sesame" command that opened doors to treasure in Ali Baba and the Forty Thieves, SimSimd can help you 10x the cost-efficiency of your computational pipelines. Implemented distance functions include:

  • Euclidean (L2) and Cosine (Angular) spatial distances for Vector Search. docs
  • Dot-Products for real & complex vectors for DSP & Quantum computing. docs
  • Hamming (~ Manhattan) and Jaccard (~ Tanimoto) bit-level distances. docs
  • Set Intersections for Sparse Vectors and Text Analysis. docs
  • Mahalanobis distance and Quadratic forms for Scientific Computing. docs
  • Kullback-Leibler and Jensen–Shannon divergences for probability distributions. docs
  • Fused-Multiply-Add (FMA) and Weighted Sums to replace BLAS level 1 functions. docs
  • For Levenshtein, Needleman–Wunsch, and Smith-Waterman, check StringZilla.
  • 🔜 Haversine and Vincenty's formulae for Geospatial Analysis.

Moreover, SimSIMD...

  • handles float64, float32, float16, and bfloat16 real & complex vectors.
  • handles int8 integral, int4 sub-byte, and b8 binary vectors.
  • handles sparse uint32 and uint16 sets, and weighted sparse vectors.
  • is a zero-dependency header-only C 99 library.
  • has Python, Rust, JS, and Swift bindings.
  • has Arm backends for NEON, Scalable Vector Extensions (SVE), and SVE2.
  • has x86 backends for Haswell, Skylake, Ice Lake, Genoa, and Sapphire Rapids.
  • with both compile-time and runtime CPU feature detection easily integrates anywhere!

Due to the high-level of fragmentation of SIMD support in different x86 CPUs, SimSIMD generally uses the names of select Intel CPU generations for its backends. They, however, also work on AMD CPUs. Intel Haswell is compatible with AMD Zen 1/2/3, while AMD Genoa Zen 4 covers AVX-512 instructions added to Intel Skylake and Ice Lake. You can learn more about the technical implementation details in the following blog-posts:

Benchmarks

For reference, we use 1536-dimensional vectors, like the embeddings produced by the OpenAI Ada API. Comparing the serial code throughput produced by GCC 12 to hand-optimized kernels in SimSIMD, we see the following single-core improvements for the two most common vector-vector similarity metrics - the Cosine similarity and the Euclidean distance:

Type Apple M2 Pro Intel Sapphire Rapids AWS Graviton 4
float64 18.5 → 28.8 GB/s
+ 56 %
21.9 → 41.4 GB/s
+ 89 %
20.7 → 41.3 GB/s
+ 99 %
float32 9.2 → 29.6 GB/s
+ 221 %
10.9 → 95.8 GB/s
+ 779 %
4.9 → 41.9 GB/s
+ 755 %
float16 4.6 → 14.6 GB/s
+ 217 %
3.1 → 108.4 GB/s
+ 3,397 %
5.4 → 39.3 GB/s
+ 627 %
bfloat16 4.6 → 26.3 GB/s
+ 472 %
0.8 → 59.5 GB/s
+7,437 %
2.5 → 29.9 GB/s
+ 1,096 %
int8 25.8 → 47.1 GB/s
+ 83 %
33.1 → 65.3 GB/s
+ 97 %
35.2 → 43.5 GB/s
+ 24 %
uint8 32.5 → 66.5 GB/s
+ 105 %

Similar speedups are often observed even when compared to BLAS and LAPACK libraries underlying most numerical computing libraries, including NumPy and SciPy in Python. Broader benchmarking results:

Using SimSIMD in Python

The package is intended to replace the usage of numpy.inner, numpy.dot, and scipy.spatial.distance. Aside from drastic performance improvements, SimSIMD significantly improves accuracy in mixed precision setups. NumPy and SciPy, processing int8, uint8 or float16 vectors, will use the same types for accumulators, while SimSIMD can combine int8 enumeration, int16 multiplication, and int32 accumulation to avoid overflows entirely. The same applies to processing float16 and bfloat16 values with float32 precision.

Installation

Use the following snippet to install SimSIMD and list available hardware acceleration options available on your machine:

pip install simsimd
python -c "import simsimd; print(simsimd.get_capabilities())"   # for hardware introspection
python -c "import simsimd; help(simsimd)"                       # for documentation

With precompiled binaries, SimSIMD ships .pyi interface files for type hinting and static analysis. You can check all the available functions in python/annotations/__init__.pyi.

One-to-One Distance

import simsimd
import numpy as np

vec1 = np.random.randn(1536).astype(np.float32)
vec2 = np.random.randn(1536).astype(np.float32)
dist = simsimd.cosine(vec1, vec2)

Supported functions include cosine, inner, sqeuclidean, hamming, jaccard, kulbackleibler, jensenshannon, and intersect. Dot products are supported for both real and complex numbers:

vec1 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64)
vec2 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64)

dist = simsimd.dot(vec1.astype(np.complex128), vec2.astype(np.complex128))
dist = simsimd.dot(vec1.astype(np.complex64), vec2.astype(np.complex64))
dist = simsimd.vdot(vec1.astype(np.complex64), vec2.astype(np.complex64)) # conjugate, same as `np.vdot`

Unlike SciPy, SimSIMD allows explicitly stating the precision of the input vectors, which is especially useful for mixed-precision setups. The dtype argument can be passed both by name and as a positional argument:

dist = simsimd.cosine(vec1, vec2, "int8")
dist = simsimd.cosine(vec1, vec2, "float16")
dist = simsimd.cosine(vec1, vec2, "float32")
dist = simsimd.cosine(vec1, vec2, "float64")
dist = simsimd.hamming(vec1, vec2, "bit8")

With other frameworks, like PyTorch, one can get a richer type-system than NumPy, but the lack of good CPython interoperability makes it hard to pass data without copies.

import numpy as np
buf1 = np.empty(8, dtype=np.uint16)
buf2 = np.empty(8, dtype=np.uint16)

# View the same memory region with PyTorch and randomize it
import torch
vec1 = torch.asarray(memoryview(buf1), copy=False).view(torch.bfloat16)
vec2 = torch.asarray(memoryview(buf2), copy=False).view(torch.bfloat16)
torch.randn(8, out=vec1)
torch.randn(8, out=vec2)

# Both libs will look into the same memory buffers and report the same results
dist_slow = 1 - torch.nn.functional.cosine_similarity(vec1, vec2, dim=0)
dist_fast = simsimd.cosine(buf1, buf2, "bf16")

It also allows using SimSIMD for half-precision complex numbers, which NumPy does not support. For that, view data as continuous even-length np.float16 vectors and override type-resolution with complex32 string.

vec1 = np.random.randn(1536).astype(np.float16)
vec2 = np.random.randn(1536).astype(np.float16)
simd.dot(vec1, vec2, "complex32")
simd.vdot(vec1, vec2, "complex32")

When dealing with sparse representations and integer sets, you can apply the intersect function to two 1-dimensional arrays of uint16 or uint32 integers:

from random import randint
import numpy as np
import simsimd as simd

length1, length2 = randint(1, 100), randint(1, 100)
vec1 = np.sort(np.random.randint(0, 1000, length1).astype(np.uint16))
vec2 = np.sort(np.random.randint(0, 1000, length2).astype(np.uint16))

slow_result = len(np.intersect1d(vec1, vec2))
fast_result = simd.intersect(vec1, vec2)
assert slow_result == fast_result

One-to-Many Distances

Every distance function can be used not only for one-to-one but also one-to-many and many-to-many distance calculations. For one-to-many:

vec1 = np.random.randn(1536).astype(np.float32) # rank 1 tensor
batch1 = np.random.randn(1, 1536).astype(np.float32) # rank 2 tensor
batch2 = np.random.randn(100, 1536).astype(np.float32)

dist_rank1 = simsimd.cosine(vec1, batch2)
dist_rank2 = simsimd.cosine(batch1, batch2)

Many-to-Many Distances

All distance functions in SimSIMD can be used to compute many-to-many distances. For two batches of 100 vectors to compute 100 distances, one would call it like this:

batch1 = np.random.randn(100, 1536).astype(np.float32)
batch2 = np.random.randn(100, 1536).astype(np.float32)
dist = simsimd.cosine(batch1, batch2)

Input matrices must have identical shapes. This functionality isn't natively present in NumPy or SciPy, and generally requires creating intermediate arrays, which is inefficient and memory-consuming.

Many-to-Many All-Pairs Distances

One can use SimSIMD to compute distances between all possible pairs of rows across two matrices (akin to scipy.spatial.distance.cdist). The resulting object will have a type DistancesTensor, zero-copy compatible with NumPy and other libraries. For two arrays of 10 and 1,000 entries, the resulting tensor will have 10,000 cells:

import numpy as np
from simsimd import cdist, DistancesTensor

matrix1 = np.random.randn(1000, 1536).astype(np.float32)
matrix2 = np.random.randn(10, 1536).astype(np.float32)
distances: DistancesTensor = simsimd.cdist(matrix1, matrix2, metric="cosine")   # zero-copy, managed by SimSIMD
distances_array: np.ndarray = np.array(distances, copy=True)                    # now managed by NumPy

Elementwise Kernels

SimSIMD also provides mixed-precision elementwise kernels, where the input vectors and the output have the same numeric type, but the intermediate accumulators are of a higher precision.

import numpy as np
from simsimd import fma, wsum

# Let's take two FullHD video frames
first_frame = np.random.randn(1920 * 1024).astype(np.uint8)  
second_frame = np.random.randn(1920 * 1024).astype(np.uint8)
average_frame = np.empty_like(first_frame)
wsum(first_frame, second_frame, alpha=0.5, beta=0.5, out=average_frame)

# Slow analog with NumPy:
slow_average_frame = (0.5 * first_frame + 0.5 * second_frame).astype(np.uint8)

Similarly, the fma takes three arguments and computes the fused multiply-add operation. In applications like Machine Learning you may also benefit from using the "brain-float" format not natively supported by NumPy. In 3D Graphics, for example, we can use FMA to compute the Phong shading model:

# Assume a FullHD frame with random values for simplicity
light_intensity = np.random.rand(1920 * 1080).astype(np.float16)  # Intensity of light on each pixel
diffuse_component = np.random.rand(1920 * 1080).astype(np.float16)  # Diffuse reflectance on the surface
specular_component = np.random.rand(1920 * 1080).astype(np.float16)  # Specular reflectance for highlights
output_color = np.empty_like(light_intensity)  # Array to store the resulting color intensity

# Define the scaling factors for diffuse and specular contributions
alpha = 0.7  # Weight for the diffuse component
beta = 0.3   # Weight for the specular component

# Formula: color = alpha * light_intensity * diffuse_component + beta * specular_component
fma(light_intensity, diffuse_component, specular_component, 
    dtype="float16", # Optional, unless it can't be inferred from the input
    alpha=alpha, beta=beta, out=output_color)

# Slow analog with NumPy for comparison
slow_output_color = (alpha * light_intensity * diffuse_component + beta * specular_component).astype(np.float16)

Multithreading and Memory Usage

By default, computations use a single CPU core. To override this behavior, use the threads argument. Set it to 0 to use all available CPU cores. Here is an example of dealing with large sets of binary vectors:

ndim = 1536 # OpenAI Ada embeddings
matrix1 = np.packbits(np.random.randint(2, size=(10_000, ndim)).astype(np.uint8))
matrix2 = np.packbits(np.random.randint(2, size=(1_000, ndim)).astype(np.uint8))

distances = simsimd.cdist(matrix1, matrix2, 
    metric="hamming",   # Unlike SciPy, SimSIMD doesn't divide by the number of dimensions
    out_dtype="uint8",  # so we can use `uint8` instead of `float64` to save memory.
    threads=0,          # Use all CPU cores with OpenMP.
    dtype="bin8",       # Override input argument type to `bin8` eight-bit words.
)

By default, the output distances will be stored in double-precision float64 floating-point numbers. That behavior may not be space-efficient, especially if you are computing the hamming distance between short binary vectors, that will generally fit into 8x smaller uint8 or uint16 types. To override this behavior, use the dtype argument.

Helper Functions

You can turn specific backends on or off depending on the exact environment. A common case may be avoiding AVX-512 on older AMD CPUs and Intel Ice Lake CPUs to ensure the CPU doesn't change the frequency license and throttle performance.

$ simsimd.get_capabilities()
> {'serial': True, 'neon': False, 'sve': False, 'neon_f16': False, 'sve_f16': False, 'neon_bf16': False, 'sve_bf16': False, 'neon_i8': False, 'sve_i8': False, 'haswell': True, 'skylake': True, 'ice': True, 'genoa': True, 'sapphire': True, 'turin': True}
$ simsimd.disable_capability("sapphire")
$ simsimd.enable_capability("sapphire")

Using Python API with USearch

Want to use it in Python with USearch? You can wrap the raw C function pointers SimSIMD backends into a CompiledMetric and pass it to USearch, similar to how it handles Numba's JIT-compiled code.

from usearch.index import Index, CompiledMetric, MetricKind, MetricSignature
from simsimd import pointer_to_sqeuclidean, pointer_to_cosine, pointer_to_inner

metric = CompiledMetric(
    pointer=pointer_to_cosine("f16"),
    kind=MetricKind.Cos,
    signature=MetricSignature.ArrayArraySize,
)

index = Index(256, metric=metric)

Using SimSIMD in Rust

To install, add the following to your Cargo.toml:

[dependencies]
simsimd = "..."

Before using the SimSIMD library, ensure you have imported the necessary traits and types into your Rust source file. The library provides several traits for different distance/similarity kinds - SpatialSimilarity, BinarySimilarity, and ProbabilitySimilarity.

Spatial Similarity: Cosine and Euclidean Distances

use simsimd::SpatialSimilarity;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0];
    let vector_b: Vec<f32> = vec![4.0, 5.0, 6.0];

    // Compute the cosine similarity between vector_a and vector_b
    let cosine_similarity = f32::cosine(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);

    // Compute the squared Euclidean distance between vector_a and vector_b
    let sq_euclidean_distance = f32::sqeuclidean(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Squared Euclidean Distance: {}", sq_euclidean_distance);
}

Spatial similarity functions are available for f64, f32, f16, and i8 types.

Dot-Products: Inner and Complex Inner Products

use simsimd::SpatialSimilarity;
use simsimd::ComplexProducts;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0, 4.0];
    let vector_b: Vec<f32> = vec![5.0, 6.0, 7.0, 8.0];

    // Compute the inner product between vector_a and vector_b
    let inner_product = SpatialSimilarity::dot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Inner Product: {}", inner_product);

    // Compute the complex inner product between complex_vector_a and complex_vector_b
    let complex_inner_product = ComplexProducts::dot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    let complex_conjugate_inner_product = ComplexProducts::vdot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Complex Inner Product: {:?}", complex_inner_product); // -18, 69
    println!("Complex C. Inner Product: {:?}", complex_conjugate_inner_product); // 70, -8
}

Complex inner products are available for f64, f32, and f16 types.

Probability Distributions: Jensen-Shannon and Kullback-Leibler Divergences

use simsimd::SpatialSimilarity;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0];
    let vector_b: Vec<f32> = vec![4.0, 5.0, 6.0];

    let cosine_similarity = f32::jensenshannon(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);

    let sq_euclidean_distance = f32::kullbackleibler(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Squared Euclidean Distance: {}", sq_euclidean_distance);
}

Probability similarity functions are available for f64, f32, and f16 types.

Binary Similarity: Hamming and Jaccard Distances

Similar to spatial distances, one can compute bit-level distance functions between slices of unsigned integers:

use simsimd::BinarySimilarity;

fn main() {
    let vector_a = &[0b11110000, 0b00001111, 0b10101010];
    let vector_b = &[0b11110000, 0b00001111, 0b01010101];

    // Compute the Hamming distance between vector_a and vector_b
    let hamming_distance = u8::hamming(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Hamming Distance: {}", hamming_distance);

    // Compute the Jaccard distance between vector_a and vector_b
    let jaccard_distance = u8::jaccard(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Jaccard Distance: {}", jaccard_distance);
}

Binary similarity functions are available only for u8 types.

Half-Precision Floating-Point Numbers

Rust has no native support for half-precision floating-point numbers, but SimSIMD provides a f16 type. It has no functionality - it is a transparent wrapper around u16 and can be used with half or any other half-precision library.

use simsimd::SpatialSimilarity;
use simsimd::f16 as SimF16;
use half::f16 as HalfF16;

fn main() {
    let vector_a: Vec<HalfF16> = ...
    let vector_b: Vec<HalfF16> = ...

    let buffer_a: &[SimF16] = unsafe { std::slice::from_raw_parts(a_half.as_ptr() as *const SimF16, a_half.len()) };
    let buffer_b: &[SimF16] = unsafe { std::slice::from_raw_parts(b_half.as_ptr() as *const SimF16, b_half.len()) };

    // Compute the cosine similarity between vector_a and vector_b
    let cosine_similarity = SimF16::cosine(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);
}

Half-Precision Brain-Float Numbers

The "brain-float-16" is a popular machine learning format. It's broadly supported in hardware and is very machine-friendly, but software support is still lagging behind. Unlike NumPy, you can already use bf16 datatype in SimSIMD. Luckily, to downcast f32 to bf16 you only have to drop the last 16 bits:

import numpy as np
import simsimd as simd

a = np.random.randn(ndim).astype(np.float32)
b = np.random.randn(ndim).astype(np.float32)

# NumPy doesn't natively support brain-float, so we need a trick!
# Luckily, it's very easy to reduce the representation accuracy
# by simply masking the low 16-bits of our 32-bit single-precision
# numbers. We can also add `0x8000` to round the numbers.
a_f32rounded = ((a.view(np.uint32) + 0x8000) & 0xFFFF0000).view(np.float32)
b_f32rounded = ((b.view(np.uint32) + 0x8000) & 0xFFFF0000).view(np.float32)

# To represent them as brain-floats, we need to drop the second half
a_bf16 = np.right_shift(a_f32rounded.view(np.uint32), 16).astype(np.uint16)
b_bf16 = np.right_shift(b_f32rounded.view(np.uint32), 16).astype(np.uint16)

# Now we can compare the results
expected = np.inner(a_f32rounded, b_f32rounded)
result = simd.inner(a_bf16, b_bf16, "bf16")

Dynamic Dispatch in Rust

SimSIMD provides a dynamic dispatch mechanism to select the most advanced micro-kernel for the current CPU. You can query supported backends and use the SimSIMD::capabilities function to select the best one.

println!("uses neon: {}", capabilities::uses_neon());
println!("uses sve: {}", capabilities::uses_sve());
println!("uses haswell: {}", capabilities::uses_haswell());
println!("uses skylake: {}", capabilities::uses_skylake());
println!("uses ice: {}", capabilities::uses_ice());
println!("uses genoa: {}", capabilities::uses_genoa());
println!("uses sapphire: {}", capabilities::uses_sapphire());
println!("uses turin: {}", capabilities::uses_turin());

Using SimSIMD in JavaScript

To install, choose one of the following options depending on your environment:

  • npm install --save simsimd
  • yarn add simsimd
  • pnpm add simsimd
  • bun install simsimd

The package is distributed with prebuilt binaries, but if your platform is not supported, you can build the package from the source via npm run build. This will automatically happen unless you install the package with the --ignore-scripts flag or use Bun. After you install it, you will be able to call the SimSIMD functions on various TypedArray variants:

const { sqeuclidean, cosine, inner, hamming, jaccard } = require('simsimd');

const vectorA = new Float32Array([1.0, 2.0, 3.0]);
const vectorB = new Float32Array([4.0, 5.0, 6.0]);

const distance = sqeuclidean(vectorA, vectorB);
console.log('Squared Euclidean Distance:', distance);

Other numeric types and precision levels are supported as well. For double-precision floating-point numbers, use Float64Array:

const vectorA = new Float64Array([1.0, 2.0, 3.0]);
const vectorB = new Float64Array([4.0, 5.0, 6.0]);
const distance = cosine(vectorA, vectorB);

When doing machine learning and vector search with high-dimensional vectors you may want to quantize them to 8-bit integers. You may want to project values from the $[-1, 1]$ range to the $[-127, 127]$ range and then cast them to Int8Array:

const quantizedVectorA = new Int8Array(vectorA.map(v => (v * 127)));
const quantizedVectorB = new Int8Array(vectorB.map(v => (v * 127)));
const distance = cosine(quantizedVectorA, quantizedVectorB);

A more extreme quantization case would be to use binary vectors. You can map all positive values to 1 and all negative values and zero to 0, packing eight values into a single byte. After that, Hamming and Jaccard distances can be computed.

const { toBinary, hamming } = require('simsimd');

const binaryVectorA = toBinary(vectorA);
const binaryVectorB = toBinary(vectorB);
const distance = hamming(binaryVectorA, binaryVectorB);

Using SimSIMD in Sift

To install, simply add the following dependency to you Package.swift:

dependencies: [
    .package(url: "https://github.com/ashvardanian/simsimd")
]

The package provides the most common spatial metrics for Int8, Float16, Float32, and Float64 vectors.

import SimSIMD

let vectorA: [Int8] = [1, 2, 3]
let vectorB: [Int8] = [4, 5, 6]

let cosineSimilarity = vectorA.cosine(vectorB)  // Computes the cosine similarity
let dotProduct = vectorA.dot(vectorB)           // Computes the dot product
let sqEuclidean = vectorA.sqeuclidean(vectorB)  // Computes the squared Euclidean distance

Using SimSIMD in C

For integration within a CMake-based project, add the following segment to your CMakeLists.txt:

FetchContent_Declare(
    simsimd
    GIT_REPOSITORY https://github.com/ashvardanian/simsimd.git
    GIT_SHALLOW TRUE
)
FetchContent_MakeAvailable(simsimd)

After that, you can use the SimSIMD library in your C code in several ways. Simplest of all, you can include the headers, and the compiler will automatically select the most recent CPU extensions that SimSIMD will use.

#include <simsimd/simsimd.h>

int main() {
    simsimd_f32_t vector_a[1536];
    simsimd_f32_t vector_b[1536];
    simsimd_kernel_punned_t distance_function = simsimd_metric_punned(
        simsimd_metric_cos_k,   // Metric kind, like the angular cosine distance
        simsimd_datatype_f32_k, // Data type, like: f16, f32, f64, i8, b8, and complex variants
        simsimd_cap_any_k);     // Which CPU capabilities are we allowed to use
    simsimd_distance_t distance;
    distance_function(vector_a, vector_b, 1536, &distance);
    return 0;
}

Dynamic Dispatch in C

To avoid hard-coding the backend, you can rely on c/lib.c to prepackage all possible backends in one binary, and select the most recent CPU features at runtime. That feature of the C library is called dynamic dispatch and is extensively used in the Python, JavaScript, and Rust bindings. To test which CPU features are available on the machine at runtime, use the following APIs:

int uses_dynamic_dispatch = simsimd_uses_dynamic_dispatch(); // Check if dynamic dispatch was enabled
simsimd_capability_t capabilities = simsimd_capabilities();  // Returns a bitmask

int uses_neon = simsimd_uses_neon();
int uses_sve = simsimd_uses_sve();
int uses_haswell = simsimd_uses_haswell();
int uses_skylake = simsimd_uses_skylake();
int uses_ice = simsimd_uses_ice();
int uses_genoa = simsimd_uses_genoa();
int uses_sapphire = simsimd_uses_sapphire();

To override compilation settings and switch between runtime and compile-time dispatch, define the following macro:

#define SIMSIMD_DYNAMIC_DISPATCH 1 // or 0

Spatial Distances: Cosine and Euclidean Distances

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_i8_t i8[1536];
    simsimd_distance_t distance;

    // Cosine distance between two vectors
    simsimd_cos_i8(i8s, i8s, 1536, &distance);
    simsimd_cos_f16(f16s, f16s, 1536, &distance);
    simsimd_cos_f32(f32s, f32s, 1536, &distance);
    simsimd_cos_f64(f64s, f64s, 1536, &distance);
    
    // Euclidean distance between two vectors
    simsimd_l2sq_i8(i8s, i8s, 1536, &distance);
    simsimd_l2sq_f16(f16s, f16s, 1536, &distance);
    simsimd_l2sq_f32(f32s, f32s, 1536, &distance);
    simsimd_l2sq_f64(f64s, f64s, 1536, &distance);

    return 0;
}

Dot-Products: Inner and Complex Inner Products

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_distance_t distance;

    // Inner product between two vectors
    simsimd_dot_f16(f16s, f16s, 1536, &distance);
    simsimd_dot_f32(f32s, f32s, 1536, &distance);
    simsimd_dot_f64(f64s, f64s, 1536, &distance);

    // Complex inner product between two vectors
    simsimd_dot_f16c(f16s, f16s, 1536, &distance);
    simsimd_dot_f32c(f32s, f32s, 1536, &distance);
    simsimd_dot_f64c(f64s, f64s, 1536, &distance);

    // Complex conjugate inner product between two vectors
    simsimd_vdot_f16c(f16s, f16s, 1536, &distance);
    simsimd_vdot_f32c(f32s, f32s, 1536, &distance);
    simsimd_vdot_f64c(f64s, f64s, 1536, &distance);
    return 0;
}

Binary Distances: Hamming and Jaccard Distances

#include <simsimd/simsimd.h>

int main() {
    simsimd_b8_t b8s[1536 / 8]; // 8 bits per word
    simsimd_distance_t distance;
    simsimd_hamming_b8(b8s, b8s, 1536 / 8, &distance);
    simsimd_jaccard_b8(b8s, b8s, 1536 / 8, &distance);
    return 0;
}

Probability Distributions: Jensen-Shannon and Kullback-Leibler Divergences

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_distance_t distance;

    // Jensen-Shannon divergence between two vectors
    simsimd_js_f16(f16s, f16s, 1536, &distance);
    simsimd_js_f32(f32s, f32s, 1536, &distance);
    simsimd_js_f64(f64s, f64s, 1536, &distance);

    // Kullback-Leibler divergence between two vectors
    simsimd_kl_f16(f16s, f16s, 1536, &distance);
    simsimd_kl_f32(f32s, f32s, 1536, &distance);
    simsimd_kl_f64(f64s, f64s, 1536, &distance);
    return 0;
}

Half-Precision Floating-Point Numbers

If you aim to utilize the _Float16 functionality with SimSIMD, ensure your development environment is compatible with C 11. For other SimSIMD functionalities, C 99 compatibility will suffice. To explicitly disable half-precision support, define the following macro before imports:

#define SIMSIMD_NATIVE_F16 0 // or 1
#define SIMSIMD_NATIVE_BF16 0 // or 1
#include <simsimd/simsimd.h>

Compilation Settings and Debugging

SIMSIMD_DYNAMIC_DISPATCH:

By default, SimSIMD is a header-only library. But if you are running on different generations of devices, it makes sense to pre-compile the library for all supported generations at once, and dispatch at runtime. This flag does just that and is used to produce the simsimd.so shared library, as well as the Python and other bindings.

For Arm: SIMSIMD_TARGET_NEON, SIMSIMD_TARGET_SVE, SIMSIMD_TARGET_SVE2, SIMSIMD_TARGET_NEON_F16, SIMSIMD_TARGET_SVE_F16, SIMSIMD_TARGET_NEON_BF16, SIMSIMD_TARGET_SVE_BF16. For x86: (SIMSIMD_TARGET_HASWELL, SIMSIMD_TARGET_SKYLAKE, SIMSIMD_TARGET_ICE, SIMSIMD_TARGET_GENOA, SIMSIMD_TARGET_SAPPHIRE, SIMSIMD_TARGET_TURIN, SIMSIMD_TARGET_SIERRA.

By default, SimSIMD automatically infers the target architecture and pre-compiles as many kernels as possible. In some cases, you may want to explicitly disable some of the kernels. Most often it's due to compiler support issues, like the lack of some recent intrinsics or low-precision numeric types. In other cases, you may want to disable some kernels to speed up the compilation process and trim the binary size.

SIMSIMD_SQRT, SIMSIMD_RSQRT, SIMSIMD_LOG:

By default, for non-SIMD backends, SimSIMD may use libc functions like sqrt and log. Those are generally very accurate, but slow, and introduce a dependency on the C standard library. To avoid that you can override those definitions with your custom implementations, like: #define SIMSIMD_RSQRT(x) (1 / sqrt(x)).

Algorithms & Design Decisions 📚

In general there are a few principles that SimSIMD follows:

  • Avoid loop unrolling.
  • Never allocate memory.
  • Never throw exceptions or set errno.
  • Keep all function arguments the size of the pointer.
  • Avoid returning from public interfaces, use out-arguments instead.
  • Don't over-optimize for old CPUs and single- and double-precision floating-point numbers.
  • Prioritize mixed-precision and integer operations, and new ISA extensions.
  • Prefer saturated arithmetic and avoid overflows.

Possibly, in the future:

  • Best effort computation silencing NaN components in low-precision inputs.
  • Detect overflows and report the distance with a "signaling" NaN.

Last, but not the least - don't build unless there is a demand for it. So if you have a specific use-case, please open an issue or a pull request, and ideally, bring in more users with similar needs.

Cosine Similarity, Reciprocal Square Root, and Newton-Raphson Iteration

The cosine similarity is the most common and straightforward metric used in machine learning and information retrieval. Interestingly, there are multiple ways to shoot yourself in the foot when computing it. The cosine similarity is the inverse of the cosine distance, which is the cosine of the angle between two vectors.

\text{CosineSimilarity}(a, b) = \frac{a \cdot b}{\|a\| \cdot \|b\|}
\text{CosineDistance}(a, b) = 1 - \frac{a \cdot b}{\|a\| \cdot \|b\|}

In NumPy terms, SimSIMD implementation is similar to:

import numpy as np

def cos_numpy(a: np.ndarray, b: np.ndarray) -> float:
    ab, a2, b2 = np.dot(a, b), np.dot(a, a), np.dot(b, b) # Fused in SimSIMD
    if a2 == 0 and b2 == 0: result = 0                    # Same in SciPy
    elif ab == 0: result = 1                              # Division by zero error in SciPy
    else: result = 1 - ab / (sqrt(a2) * sqrt(b2))         # Bigger rounding error in SciPy
    return result

In SciPy, however, the cosine distance is computed as 1 - ab / np.sqrt(a2 * b2). It handles the edge case of a zero and non-zero argument pair differently, resulting in a division by zero error. It's not only less efficient, but also less accurate, given how the reciprocal square roots are computed. The C standard library provides the sqrt function, which is generally very accurate, but slow. The rsqrt in-hardware implementations are faster, but have different accuracy characteristics.

  • SSE rsqrtps and AVX vrsqrtps: $1.5 \times 2^{-12}$ maximal relative error.
  • AVX-512 vrsqrt14pd instruction: $2^{-14}$ maximal relative error.
  • NEON frsqrte instruction has no documented error bounds, but can be $2^{-3}$.

To overcome the limitations of the rsqrt instruction, SimSIMD uses the Newton-Raphson iteration to refine the initial estimate for high-precision floating-point numbers. It can be defined as:

x_{n+1} = x_n \cdot (3 - x_n \cdot x_n) / 2

On 1536-dimensional inputs on Intel Sapphire Rapids CPU a single such iteration can result in a 2-3 orders of magnitude relative error reduction:

Datatype NumPy Error SimSIMD w/out Iteration SimSIMD
bfloat16 1.89e-08 ± 1.59e-08 3.07e-07 ± 3.09e-07 3.53e-09 ± 2.70e-09
float16 1.67e-02 ± 1.44e-02 2.68e-05 ± 1.95e-05 2.02e-05 ± 1.39e-05
float32 2.21e-08 ± 1.65e-08 3.47e-07 ± 3.49e-07 3.77e-09 ± 2.84e-09
float64 0.00e+00 ± 0.00e+00 3.80e-07 ± 4.50e-07 1.35e-11 ± 1.85e-11

Curved Spaces, Mahalanobis Distance, and Bilinear Quadratic Forms

The Mahalanobis distance is a generalization of the Euclidean distance, which takes into account the covariance of the data. It's very similar in its form to the bilinear form, which is a generalization of the dot product.

\text{BilinearForm}(a, b, M) = a^T M b
\text{Mahalanobis}(a, b, M) = \sqrt{(a - b)^T M^{-1} (a - b)}

Bilinear Forms can be seen as one of the most important linear algebraic operations, surprisingly missing in BLAS and LAPACK. They are versatile and appear in various domains:

  • In Quantum Mechanics, the expectation value of an observable $A$ in a state $\psi$ is given by $\langle \psi | A | \psi \rangle$, which is a bilinear form.
  • In Machine Learning, in Support Vector Machines (SVMs), bilinear forms define kernel functions that measure similarity between data points.
  • In Differential Geometry, the metric tensor, which defines distances and angles on a manifold, is a bilinear form on the tangent space.
  • In Economics, payoff functions in certain Game Theoretic problems can be modeled as bilinear forms of players' strategies.
  • In Physics, interactions between electric and magnetic fields can be expressed using bilinear forms.

Broad applications aside, the lack of a specialized primitive for bilinear forms in BLAS and LAPACK means significant performance overhead. A $vector * matrix * vector$ product is a scalar, whereas its constituent parts ($vector * matrix$ and $matrix * vector$) are vectors:

  • They need memory to be stored in: $O(n)$ allocation.
  • The data will be written to memory and read back, wasting CPU cycles.

SimSIMD doesn't produce intermediate vector results, like a @ M @ b, but computes the bilinear form directly.

Set Intersection, Galloping, and Binary Search

The set intersection operation is generally defined as the number of elements that are common between two sets, represented as sorted arrays of integers. The most common way to compute it is a linear scan:

size_t intersection_size(int *a, int *b, size_t n, size_t m) {
    size_t i = 0, j = 0, count = 0;
    while (i < n && j < m) {
        if (a[i] < b[j]) i++;
        else if (a[i] > b[j]) j++;
        else i++, j++, count++;
    }
    return count;
}

Alternatively, one can use the binary search to find the elements in the second array that are present in the first one. On every step the checked region of the second array is halved, which is called the galloping search. It's faster, but only when large arrays of very different sizes are intersected. Third approach is to use the SIMD instructions to compare multiple elements at once:

  • Using string-intersection instructions on x86, like pcmpestrm.
  • Using integer-intersection instructions in AVX-512, like vp2intersectd.
  • Using vanilla equality checks present in all SIMD instruction sets.

After benchmarking, the last approach was chosen, as it's the most flexible and often the fastest.

Complex Dot Products, Conjugate Dot Products, and Complex Numbers

Complex dot products are a generalization of the dot product to complex numbers. They are supported by most BLAS packages, but almost never in mixed precision. SimSIMD defines dot and vdot kernels as:

\text{dot}(a, b) = \sum_{i=0}^{n-1} a_i \cdot b_i
\text{vdot}(a, b) = \sum_{i=0}^{n-1} a_i \cdot \bar{b_i}

Where $\bar{b_i}$ is the complex conjugate of $b_i$. Putting that into Python code for scalar arrays:

def dot(a: List[number], b: List[number]) -> number:
    a_real, a_imaginary = a[0::2], a[1::2]
    b_real, b_imaginary = b[0::2], b[1::2]
    ab_real, ab_imaginary = 0, 0
    for ar, ai, br, bi in zip(a_real, a_imaginary, b_real, b_imaginary):
        ab_real += ar * br - ai * bi
        ab_imaginary += ar * bi + ai * br
    return ab_real, ab_imaginary

def vdot(a: List[number], b: List[number]) -> number:
    a_real, a_imaginary = a[0::2], a[1::2]
    b_real, b_imaginary = b[0::2], b[1::2]
    ab_real, ab_imaginary = 0, 0
    for ar, ai, br, bi in zip(a_real, a_imaginary, b_real, b_imaginary):
        ab_real += ar * br + ai * bi
        ab_imaginary += ar * bi - ai * br
    return ab_real, ab_imaginary

Logarithms in Kullback-Leibler & Jensen–Shannon Divergences

The Kullback-Leibler divergence is a measure of how one probability distribution diverges from a second, expected probability distribution. Jensen-Shannon divergence is a symmetrized and smoothed version of the Kullback-Leibler divergence, which can be used as a distance metric between probability distributions.

\text{KL}(P || Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}
\text{JS}(P, Q) = \frac{1}{2} \text{KL}(P || M) + \frac{1}{2} \text{KL}(Q || M), M = \frac{P + Q}{2}

Both functions are defined for non-negative numbers, and the logarithm is a key part of their computation.

Mixed Precision in Fused-Multiply-Add and Weighted Sums

The Fused-Multiply-Add (FMA) operation is a single operation that combines element-wise multiplication and addition with different scaling factors. The Weighted Sum is it's simplified variant without element-wise multiplication.

\text{FMA}_i(A, B, C, \alpha, \beta) = \alpha \cdot A_i \cdot B_i + \beta \cdot C_i
\text{WSum}_i(A, B, \alpha, \beta) = \alpha \cdot A_i + \beta \cdot B_i

In NumPy terms, the implementation may look like:

import numpy as np
def wsum(A: np.ndarray, B: np.ndarray, /, Alpha: float, Beta: float) -> np.ndarray:
    assert A.dtype == B.dtype, "Input types must match and affect the output style"
    return (Alpha * A + Beta * B).astype(A.dtype)
def fma(A: np.ndarray, B: np.ndarray, C: np.ndarray, /, Alpha: float, Beta: float) -> np.ndarray:
    assert A.dtype == B.dtype and A.dtype == C.dtype, "Input types must match and affect the output style"
    return (Alpha * A * B + Beta * C).astype(A.dtype)

The tricky part is implementing those operations in mixed precision, where the scaling factors are of different precision than the input and output vectors. SimSIMD uses double-precision floating-point scaling factors for any input and output precision, including i8 and u8 integers and f16 and bf16 floats. Depending on the generation of the CPU, given native support for f16 addition and multiplication, the f16 temporaries are used for i8 and u8 multiplication, scaling, and addition. For bf16, native support is generally limited to dot-products with subsequent partial accumulation, which is not enough for the FMA and WSum operations, so f32 is used as a temporary.

Auto-Vectorization & Loop Unrolling

On the Intel Sapphire Rapids platform, SimSIMD was benchmarked against auto-vectorized code using GCC 12. GCC handles single-precision float but might not be the best choice for int8 and _Float16 arrays, which have been part of the C language since 2011.

Kind GCC 12 f32 GCC 12 f16 SimSIMD f16 f16 improvement
Inner Product 3,810 K/s 192 K/s 5,990 K/s 31 x
Cosine Distance 3,280 K/s 336 K/s 6,880 K/s 20 x
Euclidean Distance ² 4,620 K/s 147 K/s 5,320 K/s 36 x
Jensen-Shannon Divergence 1,180 K/s 18 K/s 2,140 K/s 118 x

Dynamic Dispatch

Most popular software is precompiled and distributed with fairly conservative CPU optimizations, to ensure compatibility with older hardware. Database Management platforms, like ClickHouse, and Web Browsers, like Google Chrome,need to run on billions of devices, and they can't afford to be picky about the CPU features. For such users SimSIMD provides a dynamic dispatch mechanism, which selects the most advanced micro-kernel for the current CPU at runtime.

Subset F CD ER PF 4FMAPS 4VNNIW VPOPCNTDQ VL DQ BW IFMA VBMI VNNI BF16 VBMI2 BITALG VPCLMULQDQ GFNI VAES VP2INTERSECT FP16
Knights Landing (Xeon Phi x200, 2016) Yes Yes No
Knights Mill (Xeon Phi x205, 2017) Yes No
Skylake-SP, Skylake-X (2017) No No Yes No
Cannon Lake (2018) Yes No
Cascade Lake (2019) No Yes No
Cooper Lake (2020) Yes No
Ice Lake (2019) Yes No Yes No
Tiger Lake (2020) Yes No
Rocket Lake (2021) No
Alder Lake (2021) Partial Partial
Zen 4 (2022) Yes Yes No
Sapphire Rapids (2023) No Yes
Zen 5 (2024) Yes No

You can compile SimSIMD on an old CPU, like Intel Haswell, and run it on a new one, like AMD Genoa, and it will automatically use the most advanced instructions available. Reverse is also true, you can compile on a new CPU and run on an old one, and it will automatically fall back to the most basic instructions. Moreover, the very first time you prove for CPU capabilities with simsimd_capabilities(), it initializes the dynamic dispatch mechanism, and all subsequent calls will be faster and won't face race conditions in multi-threaded environments.

Target Specific Backends

SimSIMD exposes all kernels for all backends, and you can select the most advanced one for the current CPU without relying on built-in dispatch mechanisms. That's handy for testing and benchmarking, but also in case you want to dispatch a very specific kernel for a very specific CPU, bypassing SimSIMD assignment logic. All of the function names follow the same pattern: simsimd_{function}_{type}_{backend}.

  • The backend can be serial, haswell, skylake, ice, genoa, sapphire, turin, neon, or sve.
  • The type can be f64, f32, f16, bf16, f64c, f32c, f16c, bf16c, i8, or b8.
  • The function can be dot, vdot, cos, l2sq, hamming, jaccard, kl, js, or intersect.

To avoid hard-coding the backend, you can use the simsimd_kernel_punned_t to pun the function pointer and the simsimd_capabilities function to get the available backends at runtime. To match all the function names, consider a RegEx:

SIMSIMD_PUBLIC void simsimd_\w+_\w+_\w+\(

On Linux, you can use the following command to list all unique functions:

$ grep -oP 'SIMSIMD_PUBLIC void simsimd_\w+_\w+_\w+\(' include/simsimd/*.h | sort | uniq
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_haswell(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_ice(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_neon(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_serial(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_sve(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_haswell(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_ice(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_neon(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_serial(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_sve(

Release history Release notifications | RSS feed

This version

6.0.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simsimd-6.0.3.tar.gz (156.2 kB view details)

Uploaded Source

Built Distributions

simsimd-6.0.3-cp312-cp312-win_arm64.whl (55.3 kB view details)

Uploaded CPython 3.12 Windows ARM64

simsimd-6.0.3-cp312-cp312-win_amd64.whl (82.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

simsimd-6.0.3-cp312-cp312-win32.whl (52.6 kB view details)

Uploaded CPython 3.12 Windows x86

simsimd-6.0.3-cp312-cp312-musllinux_1_2_x86_64.whl (641.7 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

simsimd-6.0.3-cp312-cp312-musllinux_1_2_s390x.whl (309.5 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ s390x

simsimd-6.0.3-cp312-cp312-musllinux_1_2_ppc64le.whl (380.5 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ppc64le

simsimd-6.0.3-cp312-cp312-musllinux_1_2_i686.whl (336.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

simsimd-6.0.3-cp312-cp312-musllinux_1_2_armv7l.whl (261.8 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

simsimd-6.0.3-cp312-cp312-musllinux_1_2_aarch64.whl (449.1 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

simsimd-6.0.3-cp312-cp312-manylinux_2_28_x86_64.whl (605.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

simsimd-6.0.3-cp312-cp312-manylinux_2_28_aarch64.whl (410.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

simsimd-6.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (220.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

simsimd-6.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (289.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

simsimd-6.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (242.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

simsimd-6.0.3-cp312-cp312-macosx_11_0_arm64.whl (87.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

simsimd-6.0.3-cp312-cp312-macosx_10_13_x86_64.whl (97.3 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

simsimd-6.0.3-cp312-cp312-macosx_10_13_universal2.whl (160.2 kB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

simsimd-6.0.3-cp311-cp311-win_arm64.whl (55.3 kB view details)

Uploaded CPython 3.11 Windows ARM64

simsimd-6.0.3-cp311-cp311-win_amd64.whl (82.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

simsimd-6.0.3-cp311-cp311-win32.whl (52.5 kB view details)

Uploaded CPython 3.11 Windows x86

simsimd-6.0.3-cp311-cp311-musllinux_1_2_x86_64.whl (641.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

simsimd-6.0.3-cp311-cp311-musllinux_1_2_s390x.whl (309.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ s390x

simsimd-6.0.3-cp311-cp311-musllinux_1_2_ppc64le.whl (380.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ppc64le

simsimd-6.0.3-cp311-cp311-musllinux_1_2_i686.whl (335.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

simsimd-6.0.3-cp311-cp311-musllinux_1_2_armv7l.whl (261.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

simsimd-6.0.3-cp311-cp311-musllinux_1_2_aarch64.whl (448.9 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

simsimd-6.0.3-cp311-cp311-manylinux_2_28_x86_64.whl (605.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

simsimd-6.0.3-cp311-cp311-manylinux_2_28_aarch64.whl (409.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

simsimd-6.0.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (219.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

simsimd-6.0.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (289.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

simsimd-6.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (242.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

simsimd-6.0.3-cp311-cp311-macosx_11_0_arm64.whl (87.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

simsimd-6.0.3-cp311-cp311-macosx_10_9_x86_64.whl (98.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

simsimd-6.0.3-cp311-cp311-macosx_10_9_universal2.whl (160.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-6.0.3-cp310-cp310-win_arm64.whl (55.3 kB view details)

Uploaded CPython 3.10 Windows ARM64

simsimd-6.0.3-cp310-cp310-win_amd64.whl (82.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

simsimd-6.0.3-cp310-cp310-win32.whl (52.5 kB view details)

Uploaded CPython 3.10 Windows x86

simsimd-6.0.3-cp310-cp310-musllinux_1_2_x86_64.whl (641.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

simsimd-6.0.3-cp310-cp310-musllinux_1_2_s390x.whl (309.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ s390x

simsimd-6.0.3-cp310-cp310-musllinux_1_2_ppc64le.whl (380.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ppc64le

simsimd-6.0.3-cp310-cp310-musllinux_1_2_i686.whl (335.9 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

simsimd-6.0.3-cp310-cp310-musllinux_1_2_armv7l.whl (261.6 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARMv7l

simsimd-6.0.3-cp310-cp310-musllinux_1_2_aarch64.whl (448.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

simsimd-6.0.3-cp310-cp310-manylinux_2_28_x86_64.whl (605.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

simsimd-6.0.3-cp310-cp310-manylinux_2_28_aarch64.whl (409.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

simsimd-6.0.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (219.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

simsimd-6.0.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (289.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

simsimd-6.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (242.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

simsimd-6.0.3-cp310-cp310-macosx_11_0_arm64.whl (87.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

simsimd-6.0.3-cp310-cp310-macosx_10_9_x86_64.whl (98.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

simsimd-6.0.3-cp310-cp310-macosx_10_9_universal2.whl (160.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-6.0.3-cp39-cp39-win_arm64.whl (55.3 kB view details)

Uploaded CPython 3.9 Windows ARM64

simsimd-6.0.3-cp39-cp39-win_amd64.whl (82.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

simsimd-6.0.3-cp39-cp39-win32.whl (52.5 kB view details)

Uploaded CPython 3.9 Windows x86

simsimd-6.0.3-cp39-cp39-musllinux_1_2_x86_64.whl (641.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

simsimd-6.0.3-cp39-cp39-musllinux_1_2_s390x.whl (308.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ s390x

simsimd-6.0.3-cp39-cp39-musllinux_1_2_ppc64le.whl (380.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ppc64le

simsimd-6.0.3-cp39-cp39-musllinux_1_2_i686.whl (335.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

simsimd-6.0.3-cp39-cp39-musllinux_1_2_armv7l.whl (261.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARMv7l

simsimd-6.0.3-cp39-cp39-musllinux_1_2_aarch64.whl (448.7 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

simsimd-6.0.3-cp39-cp39-manylinux_2_28_x86_64.whl (604.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

simsimd-6.0.3-cp39-cp39-manylinux_2_28_aarch64.whl (409.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

simsimd-6.0.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (219.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

simsimd-6.0.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (289.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

simsimd-6.0.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (242.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

simsimd-6.0.3-cp39-cp39-macosx_11_0_arm64.whl (87.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

simsimd-6.0.3-cp39-cp39-macosx_10_9_x86_64.whl (98.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

simsimd-6.0.3-cp39-cp39-macosx_10_9_universal2.whl (160.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-6.0.3-cp38-cp38-win_amd64.whl (82.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

simsimd-6.0.3-cp38-cp38-win32.whl (52.5 kB view details)

Uploaded CPython 3.8 Windows x86

simsimd-6.0.3-cp38-cp38-musllinux_1_2_x86_64.whl (641.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

simsimd-6.0.3-cp38-cp38-musllinux_1_2_s390x.whl (309.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ s390x

simsimd-6.0.3-cp38-cp38-musllinux_1_2_ppc64le.whl (380.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ppc64le

simsimd-6.0.3-cp38-cp38-musllinux_1_2_i686.whl (335.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

simsimd-6.0.3-cp38-cp38-musllinux_1_2_armv7l.whl (261.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARMv7l

simsimd-6.0.3-cp38-cp38-musllinux_1_2_aarch64.whl (448.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

simsimd-6.0.3-cp38-cp38-manylinux_2_28_x86_64.whl (605.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

simsimd-6.0.3-cp38-cp38-manylinux_2_28_aarch64.whl (410.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

simsimd-6.0.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (220.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

simsimd-6.0.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (289.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

simsimd-6.0.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (242.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

simsimd-6.0.3-cp38-cp38-macosx_11_0_arm64.whl (87.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

simsimd-6.0.3-cp38-cp38-macosx_10_9_x86_64.whl (98.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

simsimd-6.0.3-cp38-cp38-macosx_10_9_universal2.whl (160.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-6.0.3-cp37-cp37m-win_amd64.whl (82.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

simsimd-6.0.3-cp37-cp37m-win32.whl (52.4 kB view details)

Uploaded CPython 3.7m Windows x86

simsimd-6.0.3-cp37-cp37m-musllinux_1_2_x86_64.whl (640.8 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

simsimd-6.0.3-cp37-cp37m-musllinux_1_2_s390x.whl (308.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ s390x

simsimd-6.0.3-cp37-cp37m-musllinux_1_2_ppc64le.whl (379.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ppc64le

simsimd-6.0.3-cp37-cp37m-musllinux_1_2_i686.whl (335.4 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

simsimd-6.0.3-cp37-cp37m-musllinux_1_2_armv7l.whl (261.0 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARMv7l

simsimd-6.0.3-cp37-cp37m-musllinux_1_2_aarch64.whl (448.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

simsimd-6.0.3-cp37-cp37m-manylinux_2_28_x86_64.whl (605.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

simsimd-6.0.3-cp37-cp37m-manylinux_2_28_aarch64.whl (409.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

simsimd-6.0.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (219.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

simsimd-6.0.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (289.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

simsimd-6.0.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (242.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

simsimd-6.0.3-cp37-cp37m-macosx_10_9_x86_64.whl (97.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file simsimd-6.0.3.tar.gz.

File metadata

  • Download URL: simsimd-6.0.3.tar.gz
  • Upload date:
  • Size: 156.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3.tar.gz
Algorithm Hash digest
SHA256 4cf9cda2076c277951fb866b317747e11cc81a9fb4f2af5c98c048ce0f53fee8
MD5 016f05341c8370b5e01f06fe954cf738
BLAKE2b-256 abf043ece2958937609035b77724f23870b7196491cb5b484463202e8569cae1

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3.tar.gz:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3.tar.gz
    • Subject digest: 4cf9cda2076c277951fb866b317747e11cc81a9fb4f2af5c98c048ce0f53fee8
    • Transparency log index: 147803075
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 55.3 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 dee0197b3d935594815c10a3b531b823096b879315a65777428c99fb4d8fdbea
MD5 1dd48223be7e517e1b49a45dec96e6ba
BLAKE2b-256 7f2bb05a477b227c6b77176c36f8e68b0ab683b9b722bca6ff64fdf4b7febd95

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-win_arm64.whl
    • Subject digest: dee0197b3d935594815c10a3b531b823096b879315a65777428c99fb4d8fdbea
    • Transparency log index: 147803190
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 82.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 331aa49273a5c59b6c93c6d8eb4a100291e5aef7fe578a03b030b2eddddd5650
MD5 8644ff1b1fb7303257f2b5d8fbb45eae
BLAKE2b-256 6d84eff70d68ce55e3b9c51b13b470244955f291e55edbeb395880e254cde873

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-win_amd64.whl
    • Subject digest: 331aa49273a5c59b6c93c6d8eb4a100291e5aef7fe578a03b030b2eddddd5650
    • Transparency log index: 147803126
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-win32.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp312-cp312-win32.whl
  • Upload date:
  • Size: 52.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 7f8ff9879e131f8222dbb6b363a3d600ba398bcb69b2fe08395d155fff43e0f0
MD5 1f24d21ba3685dd540fef7d929ca200a
BLAKE2b-256 ff4baea5d5c3055ea0482a53006478cac76723db1184b0f18d46c4c85ff4b6d5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-win32.whl
    • Subject digest: 7f8ff9879e131f8222dbb6b363a3d600ba398bcb69b2fe08395d155fff43e0f0
    • Transparency log index: 147803079
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fb8ddd1773e6755f63bbe09dca35e7ebe34f85e251d21e1253c4d55e9bcf3ad6
MD5 30a29b96197f54d56fd40c8debce374c
BLAKE2b-256 9a7bc47107d5ec9136fcc39c984e9a93b0631f1f59942e391473c3dd5c4aa557

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-musllinux_1_2_x86_64.whl
    • Subject digest: fb8ddd1773e6755f63bbe09dca35e7ebe34f85e251d21e1253c4d55e9bcf3ad6
    • Transparency log index: 147803100
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 c3776aae6f6bf0f32ccd1c64dd3c534d09d44d731620ae1238d408e5749eb551
MD5 9917011ad3466e2be06e93b137d167e1
BLAKE2b-256 125a3f3074b6334deb85dc1f48facca08e55a5e10e97edc9ce10d489048ab1fe

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-musllinux_1_2_s390x.whl
    • Subject digest: c3776aae6f6bf0f32ccd1c64dd3c534d09d44d731620ae1238d408e5749eb551
    • Transparency log index: 147803195
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 53d6424cf8073043a6590e2029d42cffccffa8accda6e89e3afcc20238815d1d
MD5 414cbb1d44406818a3e90d03fbef79ef
BLAKE2b-256 c9f9228df5278394cdd74fcfde465d52082a0b842398dfeaf243926b10dd0fd2

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-musllinux_1_2_ppc64le.whl
    • Subject digest: 53d6424cf8073043a6590e2029d42cffccffa8accda6e89e3afcc20238815d1d
    • Transparency log index: 147803152
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 276c6b41404520a2412d7bc7221436aa9f3e6af1b03bfcd731387da832d03c3f
MD5 01e885f457fd69e660485806f883cf16
BLAKE2b-256 549aeb00ef810125b278554c0e6297f45904599c77d000d56bd5536cd0d90a30

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-musllinux_1_2_i686.whl
    • Subject digest: 276c6b41404520a2412d7bc7221436aa9f3e6af1b03bfcd731387da832d03c3f
    • Transparency log index: 147803113
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 bb4f3412845b9bbf7894cb6d6b7e89bab058f4122da3914c5f0e32f31b87c270
MD5 e4ce6ecf02bac28014d7e0c2bba70655
BLAKE2b-256 19e5dcdf48c788797c80bb6c241c4d67bf0f40410f143059592c47fb0b718e59

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-musllinux_1_2_armv7l.whl
    • Subject digest: bb4f3412845b9bbf7894cb6d6b7e89bab058f4122da3914c5f0e32f31b87c270
    • Transparency log index: 147803179
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5ebcbfefa91388c5a054154263d7acdfb361b8667ea4849686aaf00243947c29
MD5 8983a4de20387269b16973e104c2a680
BLAKE2b-256 41a61c03feccf6715672854420d1ce91dbe825131cf06b79408b61bf22ae5174

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-musllinux_1_2_aarch64.whl
    • Subject digest: 5ebcbfefa91388c5a054154263d7acdfb361b8667ea4849686aaf00243947c29
    • Transparency log index: 147803169
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 737f5be113da212589e1343d2beb7afa2f4c92f72a0ec8d59ca953b1dfbc4128
MD5 b2c41f7d99f85bab2c06cdcb6b68fc47
BLAKE2b-256 f424afc69bedbba6c28b658fabc68cad923bcfec632a1288e9c8793982047a0b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-manylinux_2_28_x86_64.whl
    • Subject digest: 737f5be113da212589e1343d2beb7afa2f4c92f72a0ec8d59ca953b1dfbc4128
    • Transparency log index: 147803198
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 14aac1457ce18963a97f09d5dc866bfa65963daef29818713467877bfadb8337
MD5 96ad1af359029d63c14b9f82ba01a224
BLAKE2b-256 d4844860bfb298f2110525bf1ea1628e5d9eacf5a55288fedffaba0b4e2450ed

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-manylinux_2_28_aarch64.whl
    • Subject digest: 14aac1457ce18963a97f09d5dc866bfa65963daef29818713467877bfadb8337
    • Transparency log index: 147803127
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 bf2eb95f4aab4525b2bc4b65de124cb5b907fff3531caaeae4daef4b7f588165
MD5 90d9c8d243c9b2d51330b97c9f11101f
BLAKE2b-256 f474f70b10aa27a3c9180442085b3d497698ea57a298bc3be984b444346a71ee

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: bf2eb95f4aab4525b2bc4b65de124cb5b907fff3531caaeae4daef4b7f588165
    • Transparency log index: 147803105
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f5216260e75f19f33f7502098abea82c43e7b81e22346b0cccc5da71e526e2b4
MD5 840016e6df89090f60785fd37da94025
BLAKE2b-256 70e684ff2da08cf2b939a2cf2b0895cb0947092ff0c9f9b2e88069c2db8bace6

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: f5216260e75f19f33f7502098abea82c43e7b81e22346b0cccc5da71e526e2b4
    • Transparency log index: 147803186
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b9d5663912f5fad427cb55426b41c2d4e8660729dcc6ef1ef58c42c6e602b85a
MD5 152f45c5e536170eceac9ee0c18700af
BLAKE2b-256 b03832033ffaba008ab9a34bdc43c79813da4629d444f2865183bb6c5b159855

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: b9d5663912f5fad427cb55426b41c2d4e8660729dcc6ef1ef58c42c6e602b85a
    • Transparency log index: 147803104
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fba69ec3d8a7790a6bd5634e97c665a889bf04a7e7d64770e4c4a4c8c7db76ef
MD5 d318e39d650d31cf817b606c2a68dbc1
BLAKE2b-256 19ae9367ad251e43159c18866b4ae32b5fc96089ab4cfc96ea093f2031350813

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-macosx_11_0_arm64.whl
    • Subject digest: fba69ec3d8a7790a6bd5634e97c665a889bf04a7e7d64770e4c4a4c8c7db76ef
    • Transparency log index: 147803117
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b59c534b83701325b72a4ea1cd2ecc82b931fe0f6def85179b1d308914b5aeaa
MD5 3f279c0b46bba1f1f891b6b6e83d359d
BLAKE2b-256 f7db363979e1a31dcb3abb58f29f538b9c7c2870fab9589a01186d7c03c2a6c0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-macosx_10_13_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-macosx_10_13_x86_64.whl
    • Subject digest: b59c534b83701325b72a4ea1cd2ecc82b931fe0f6def85179b1d308914b5aeaa
    • Transparency log index: 147803203
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 9ab8f0ed8da510014bc14b742172843c5744065459fc20c0166deca372241cc4
MD5 1a32901d4afc4f390fa29b4ca6830f1b
BLAKE2b-256 27f2ca92ce57fc8fbc19a39b91b50457053c5cc2189c2319b040c5642984525d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp312-cp312-macosx_10_13_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp312-cp312-macosx_10_13_universal2.whl
    • Subject digest: 9ab8f0ed8da510014bc14b742172843c5744065459fc20c0166deca372241cc4
    • Transparency log index: 147803097
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 55.3 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 40e629963b670fa8d2043db80b157000924c56162732086337d670256a149da2
MD5 3c9c2cd710ab7535d2a7583a3ca9e5e0
BLAKE2b-256 97ae630d864960e2550a5d1222dcfbb18bb330346a40278abe2d625552774c78

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-win_arm64.whl
    • Subject digest: 40e629963b670fa8d2043db80b157000924c56162732086337d670256a149da2
    • Transparency log index: 147803164
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e50b1679223d3c84d99f77b56d4b12c55a96379d7c70d10b36bb85762ec7b41e
MD5 64e0ac9e3fae9fb2c482ce6d442e5be5
BLAKE2b-256 7d6216a4a067c51ac6668403a743007f65efb23b4581993ccc4fdcd5cc39cf21

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-win_amd64.whl
    • Subject digest: e50b1679223d3c84d99f77b56d4b12c55a96379d7c70d10b36bb85762ec7b41e
    • Transparency log index: 147803086
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 52.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c4d3b58cd07cd1b0f522b465b1d1158b38af6721b660cf375923b569a6780b68
MD5 a03ef5e6c5d46ddb12d1dcad6ba7dd71
BLAKE2b-256 dba1e3b2d5bb8bc74580dbc6a760e2e27fcba1d5fa9b057560d45197be9d0ba4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-win32.whl
    • Subject digest: c4d3b58cd07cd1b0f522b465b1d1158b38af6721b660cf375923b569a6780b68
    • Transparency log index: 147803147
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 933e26dddd9163cde460bf6def4304d0debb0ed5615b1d0e30883d2cc3363da0
MD5 0ac6a8632cb55a7a8a1ee5686d8c6386
BLAKE2b-256 fc803d11992a504479fe4d702fd1fbd8bd6a0ebec2fca43578232b259019e1c3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-musllinux_1_2_x86_64.whl
    • Subject digest: 933e26dddd9163cde460bf6def4304d0debb0ed5615b1d0e30883d2cc3363da0
    • Transparency log index: 147803096
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 ab412f222351a79cf737d76cef4727c69e746e3f4a6b80088eb1bec9aa742029
MD5 68c8afb7e5999b84c1b1caee6ccb8a25
BLAKE2b-256 f4e43fb87de7a06378224fec8d4f7507af952e6dec64faa8dd33c3400d1fa3da

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-musllinux_1_2_s390x.whl
    • Subject digest: ab412f222351a79cf737d76cef4727c69e746e3f4a6b80088eb1bec9aa742029
    • Transparency log index: 147803148
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 5eeb44eaafc09d16a5a76444cc43bc39708b4f196d0835bf6ce7093b23a44e62
MD5 c60bbcc25398cbb2d8e1c4ee4926cf77
BLAKE2b-256 2b08195d80f6e56c14dbfb1bf3858af61c607adaeea24b0b5077532d7c804a31

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-musllinux_1_2_ppc64le.whl
    • Subject digest: 5eeb44eaafc09d16a5a76444cc43bc39708b4f196d0835bf6ce7093b23a44e62
    • Transparency log index: 147803085
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 8692b2b49e3f4fe53ff6c33afb95f59a04b002195350a7d5a77f094bd24acdba
MD5 19258c7373a40f210d2474e798798ca0
BLAKE2b-256 297c7a371309cc3aa2411ea398b9f660f2a89fb075f5cf3ebace323197992b2e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-musllinux_1_2_i686.whl
    • Subject digest: 8692b2b49e3f4fe53ff6c33afb95f59a04b002195350a7d5a77f094bd24acdba
    • Transparency log index: 147803128
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 3e77f6282895113e1253bff8c077ef90b1031e8ff508a85312dfb8df20b0fe60
MD5 59d1289ee76db83a0fbb7a82b7e9ce82
BLAKE2b-256 2f3b586b75148ac1dea0e2cf918bb3d586bf6d969ba3cdc43146f4de7f0611cb

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-musllinux_1_2_armv7l.whl
    • Subject digest: 3e77f6282895113e1253bff8c077ef90b1031e8ff508a85312dfb8df20b0fe60
    • Transparency log index: 147803213
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b92f37f0ffc5b0852225b85d62fd51b796aa1ee27ff8b801feec53ee4726497f
MD5 ab8255dd1d61f7f6e00e7517aca378de
BLAKE2b-256 0494a9e785ca8ce49172be1f35642d8a739e9b28ab65c7068bd027ca51d28d0b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-musllinux_1_2_aarch64.whl
    • Subject digest: b92f37f0ffc5b0852225b85d62fd51b796aa1ee27ff8b801feec53ee4726497f
    • Transparency log index: 147803215
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d2a2d2cc41839ebbc660898c38fd74633516486604d06f54b38e0da65edb36b9
MD5 43a1c1f2ca7339a41e87c95bbc5cd642
BLAKE2b-256 2c854d3e2c5cdf551f07f4cb5f615a22802af1c6d055a67822e695285eee949e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-manylinux_2_28_x86_64.whl
    • Subject digest: d2a2d2cc41839ebbc660898c38fd74633516486604d06f54b38e0da65edb36b9
    • Transparency log index: 147803209
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4f97ceb1a6d102f8c00d106fd900a5febc9ce1eb296f22b5bfad08d6124a7df7
MD5 1e4dcb6bd37505903f6ede1db46e7574
BLAKE2b-256 df1616796b94ec0cf72cb88f6d5d268de8e89063c38d3578f77d0202d5f0f67d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-manylinux_2_28_aarch64.whl
    • Subject digest: 4f97ceb1a6d102f8c00d106fd900a5febc9ce1eb296f22b5bfad08d6124a7df7
    • Transparency log index: 147803207
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9df1057b65cd584577271fe55d02fd642b3d9b24884eed313ca19706a8b2651d
MD5 3d5776d0a079bdedf67a2a617c592284
BLAKE2b-256 a37196349b2c0c710b72691fbddaede09037a002e350c3a1cf6b1a359411f6da

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 9df1057b65cd584577271fe55d02fd642b3d9b24884eed313ca19706a8b2651d
    • Transparency log index: 147803116
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d0bfa7b51d7d5804815e6367246a710c2eaeaf0dadfaba81a2e4d3d4a1b083fe
MD5 9e76879bfab5a2825010dcc15e6036a9
BLAKE2b-256 fb64128945638850f7f4caced169bad93a5a84dbc22589d59882152c1f0c3afc

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: d0bfa7b51d7d5804815e6367246a710c2eaeaf0dadfaba81a2e4d3d4a1b083fe
    • Transparency log index: 147803090
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 45a602b8e6fa5fe66cd96b382978e94adc69ce5ed88ee9cafa048c47cb30532e
MD5 3e5b9b065f6e137485cc8f06070f8e18
BLAKE2b-256 e10de2652ad5c6afbd21f4bf7d5e00954a71efa83603b8dc5a935785145b236f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 45a602b8e6fa5fe66cd96b382978e94adc69ce5ed88ee9cafa048c47cb30532e
    • Transparency log index: 147803199
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 557ba26710375ccd6f2e5bff5f542b2b1562e74f45b4411f834457665dd5fae7
MD5 dd84b2d298ef2e8c565569e7b16b5909
BLAKE2b-256 8669b41470e6e7cb11e1b59c6ce9b0bfc949bbb67491a7f63ab128ec7db1a535

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-macosx_11_0_arm64.whl
    • Subject digest: 557ba26710375ccd6f2e5bff5f542b2b1562e74f45b4411f834457665dd5fae7
    • Transparency log index: 147803111
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa8abab64a2ac8c2da00c01640171246654c35367bea2ca9b32c32a8da8d6690
MD5 950708267f9c1612a732cd8b94d29d4c
BLAKE2b-256 d0fab0932ff17f08b85d73a7335a91b07c5fb151a36ed955bab3ec8effa807ec

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-macosx_10_9_x86_64.whl
    • Subject digest: aa8abab64a2ac8c2da00c01640171246654c35367bea2ca9b32c32a8da8d6690
    • Transparency log index: 147803129
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e13d300689cf58958780cbb84e70d4782ac232871de116f04988bba4d9d9f837
MD5 fa2dd1029b9781dd6c977052d9e04f43
BLAKE2b-256 17e859b6d75ec83f81b3f78246d97403b85380f03d8e6dee3a9fa23eff306c41

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp311-cp311-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp311-cp311-macosx_10_9_universal2.whl
    • Subject digest: e13d300689cf58958780cbb84e70d4782ac232871de116f04988bba4d9d9f837
    • Transparency log index: 147803168
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 55.3 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 071d8fb16fb0b7db37c226587c97d839be9ffe09c3850bb7546d04b2e47b1626
MD5 d59349f71c96e87055ce8b86ed41cea9
BLAKE2b-256 ccd7b890b42e2fbbc126ffe668fb0f9acab0787f0af3f2d09554e6d11ecaf178

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-win_arm64.whl
    • Subject digest: 071d8fb16fb0b7db37c226587c97d839be9ffe09c3850bb7546d04b2e47b1626
    • Transparency log index: 147803099
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 80705624d14e3c08115286f29838451e52dec7f3d2242a7fe8dd1ea36042385b
MD5 78941f1fc7a9d56fc24fbf5f9ced53a5
BLAKE2b-256 0916e27ee6ee0bed5df04eaba623b11be951f22de59c86c9f0b8d4002dc56a01

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-win_amd64.whl
    • Subject digest: 80705624d14e3c08115286f29838451e52dec7f3d2242a7fe8dd1ea36042385b
    • Transparency log index: 147803076
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 52.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 051e038cf0a74f0948519dceee5ca586289371676e03086316297e16b7e7dd1a
MD5 e384aecdcc9fbe0cabfd88b7cccfd2fb
BLAKE2b-256 d678235ebf41355939e9b62b6672dfa3e8e572e740ba1f03824c287ed21c9a6b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-win32.whl
    • Subject digest: 051e038cf0a74f0948519dceee5ca586289371676e03086316297e16b7e7dd1a
    • Transparency log index: 147803154
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e519e99815d1413a75eede1befdb7cb581609ef0b4f0cb69a98199477064ed92
MD5 6ea1017b81e816a55cbf303e69dc9042
BLAKE2b-256 ad52d01b156fe6df6eb494e592c8e1a88061871ab321328f2f81e0d9396871ad

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-musllinux_1_2_x86_64.whl
    • Subject digest: e519e99815d1413a75eede1befdb7cb581609ef0b4f0cb69a98199477064ed92
    • Transparency log index: 147803187
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 c604d06ae47ced02482258738cf16a6d4bd020f78e130b23f01b91075708b9d4
MD5 659eb7be3bd6bc6d422c946027dd8a16
BLAKE2b-256 09ff43e079fc2533da43ca93cce41ca2aeec491e6b24168cb16bb63ed694f942

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-musllinux_1_2_s390x.whl
    • Subject digest: c604d06ae47ced02482258738cf16a6d4bd020f78e130b23f01b91075708b9d4
    • Transparency log index: 147803115
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 62ac344d46a6657fb735eaf9a538f425e392c734999899f9edd953956d77978c
MD5 15c6a33f889e49a320bfd112cffce5d5
BLAKE2b-256 7608010e3ad21c92cd42d67c29e3ae506ef248d8c346bd18cb10d8aa953493be

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-musllinux_1_2_ppc64le.whl
    • Subject digest: 62ac344d46a6657fb735eaf9a538f425e392c734999899f9edd953956d77978c
    • Transparency log index: 147803140
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 9b5faa0d73494d53c1ee4b56b793a80de02872180a9828516effa911b4666802
MD5 124074d4b280d00959c86fa3e6968623
BLAKE2b-256 fecac4064575fd15ae99d823e26c0047bb6112f9eee5e90b60cd5e756c3bdc85

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-musllinux_1_2_i686.whl
    • Subject digest: 9b5faa0d73494d53c1ee4b56b793a80de02872180a9828516effa911b4666802
    • Transparency log index: 147803144
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 1400a97e8a41ffb8ff69487ab96eeef7063b33b285ab50ab885043e954c4b916
MD5 199e7290b8f2220cc7d94c40e1f32d82
BLAKE2b-256 8ec1ba2e7fbcdd7f4a8995d72f267c70ad75d11f6f2425da4e25208ae348ac21

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-musllinux_1_2_armv7l.whl
    • Subject digest: 1400a97e8a41ffb8ff69487ab96eeef7063b33b285ab50ab885043e954c4b916
    • Transparency log index: 147803178
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a4d23125840c41db26cc8b211b06cef991eb0b5bcc3811b39a1a8451b8ec0ec9
MD5 d5451a940bb357ecfdaf26634e80c882
BLAKE2b-256 1bd29556c1c41cb27f118666742c68b451211878f064857f7b10026781cf4fc2

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-musllinux_1_2_aarch64.whl
    • Subject digest: a4d23125840c41db26cc8b211b06cef991eb0b5bcc3811b39a1a8451b8ec0ec9
    • Transparency log index: 147803084
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 b17517f2e427a051c29ba758aa03467d207942ddc9d074cddc8db2737f8a21f0
MD5 2ffe2451f850dcc6469d3fb518decc37
BLAKE2b-256 cd4d8a54ef52563a1e45d09f6f6ce9470d607da479b6156c7f58b3e04b2bcc38

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-manylinux_2_28_x86_64.whl
    • Subject digest: b17517f2e427a051c29ba758aa03467d207942ddc9d074cddc8db2737f8a21f0
    • Transparency log index: 147803136
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 562fac38da3c31fb463ce649c50b5f48f19ea7c864e2d4bdcd2586ea8c0360aa
MD5 130deb191736987c721509c7fe65efed
BLAKE2b-256 24fa872516c20275abbff373701f8555aaf5c447e12593b318dd936aeecdab20

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-manylinux_2_28_aarch64.whl
    • Subject digest: 562fac38da3c31fb463ce649c50b5f48f19ea7c864e2d4bdcd2586ea8c0360aa
    • Transparency log index: 147803101
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 8b25ddde793330bbd683e241abac4da76b027e57a22a1641c38b83c5849cef41
MD5 a72bc7362d0cfcc723904ede7e45436b
BLAKE2b-256 66e6cef5266cbb10bf36ab3c9d04e7748fd52bae2e161f4a27118d62c3ea3a7a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 8b25ddde793330bbd683e241abac4da76b027e57a22a1641c38b83c5849cef41
    • Transparency log index: 147803103
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8af28652c3f709ba79f7eda19d52446f11a15216e0ad062cfba2db7239cdcdb2
MD5 f7b7109d53a2ec464018c8a76530dd8c
BLAKE2b-256 360dcb0e78bf1fd596a1b258cf224ddc0e11da5ad177b0f45c1a518560ef7796

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 8af28652c3f709ba79f7eda19d52446f11a15216e0ad062cfba2db7239cdcdb2
    • Transparency log index: 147803204
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5446c5b515c13fb9f6735ed1567ff5a23c20d9d8244d53765b7f71be057dc90f
MD5 055e8322a77f8657733f2cda6dd6409f
BLAKE2b-256 b4c75f8a9a6eb1bfeacbb684047b4ced740fe16ef179a8dda0207de34ad89e98

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 5446c5b515c13fb9f6735ed1567ff5a23c20d9d8244d53765b7f71be057dc90f
    • Transparency log index: 147803212
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b3c5ad4db6f31ff067dbef91a5143d14c04a0cddb2f2757239a4583296a467d5
MD5 996773e210463ac876c14c29e4c1028f
BLAKE2b-256 241e584c6d1d2e549b7fcef71e2d30ff935eab70d2ae1a9d5192d718ef56a4c0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-macosx_11_0_arm64.whl
    • Subject digest: b3c5ad4db6f31ff067dbef91a5143d14c04a0cddb2f2757239a4583296a467d5
    • Transparency log index: 147803082
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b3667337da874c7d04157dd519961ca58d867f79a8ce70ddcadb8e6ce0c4e961
MD5 dd180d729edea2cb0b000934adb9e91d
BLAKE2b-256 66a8919b782fa062c2645bdd891a48432dbb158ac3cf0a8b5884659e7e5cdbec

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-macosx_10_9_x86_64.whl
    • Subject digest: b3667337da874c7d04157dd519961ca58d867f79a8ce70ddcadb8e6ce0c4e961
    • Transparency log index: 147803119
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 85070d336cde4868a29387c440aea44ba756419b1ecc663a6525337760847068
MD5 9b7fb1b450777ca206f864e719a9c283
BLAKE2b-256 95b8cd65dc928d0c24294dba9e1ca4474d503d16b8630b4004cb7022b6d160d9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp310-cp310-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp310-cp310-macosx_10_9_universal2.whl
    • Subject digest: 85070d336cde4868a29387c440aea44ba756419b1ecc663a6525337760847068
    • Transparency log index: 147803077
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 55.3 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 4a585241f64d20f076af364b39481e91ac81c3824c1c75477af15808c9776803
MD5 3fd6555043404e405d6ef501cd69eb02
BLAKE2b-256 24b95631d6e27f3a101f700d9c12e8a9eefe6f292268e6bec05f5a6e8cb676fa

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-win_arm64.whl
    • Subject digest: 4a585241f64d20f076af364b39481e91ac81c3824c1c75477af15808c9776803
    • Transparency log index: 147803120
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9780d3a8e374c832b4a7deaf56a0580353b76efd65fa2e2d31b3588a04276942
MD5 c9c18e1f6a99009feb58dc685783932f
BLAKE2b-256 277f870ca103b11fdd830091762062a5895d8de3c3e3202c1edd8d7431899e32

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-win_amd64.whl
    • Subject digest: 9780d3a8e374c832b4a7deaf56a0580353b76efd65fa2e2d31b3588a04276942
    • Transparency log index: 147803080
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 52.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b98d4265b23c61aea576301cd1bd2f5ca6697eadadb31c15e3b7813b851ba2ba
MD5 96fdb51d9396210645845d5b28d5cddc
BLAKE2b-256 879c8d84b602c78eb96dfa12b0e82e4204291f89d7c467abff0e658e12302f6e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-win32.whl
    • Subject digest: b98d4265b23c61aea576301cd1bd2f5ca6697eadadb31c15e3b7813b851ba2ba
    • Transparency log index: 147803124
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 efcaa8e7f102580bce4dab2c9752f5feb2104d560cafb16a3fede4d3f375d4b8
MD5 284cb7af25b8015d21a532dd6393f42b
BLAKE2b-256 f0e1062d8688462e79e8a9a7818908034bfe997968834df7d9216937b2744456

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-musllinux_1_2_x86_64.whl
    • Subject digest: efcaa8e7f102580bce4dab2c9752f5feb2104d560cafb16a3fede4d3f375d4b8
    • Transparency log index: 147803131
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 96a119b27006381bc15c3a3d5c39ba7f201418f4e577a87cf31f305caaccc860
MD5 99378e7cd92ef15d62a9c5b1c8cdabe0
BLAKE2b-256 6360ea39855fcd4e9d2e1c5735c08dd2f4afc58ce60b21cacbb394dcbfb21c73

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-musllinux_1_2_s390x.whl
    • Subject digest: 96a119b27006381bc15c3a3d5c39ba7f201418f4e577a87cf31f305caaccc860
    • Transparency log index: 147803142
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 964980fdf3a465f7d8d921a9a52449b27e01170bd570c5e855e5da8947ec4e69
MD5 6eca8330fd23058760ed2234df6a389d
BLAKE2b-256 8d1eb3f212b212ce1c376b98b134fb84d2765e5276cbf337a5b396a905b82ad2

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-musllinux_1_2_ppc64le.whl
    • Subject digest: 964980fdf3a465f7d8d921a9a52449b27e01170bd570c5e855e5da8947ec4e69
    • Transparency log index: 147803157
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 9a113b9a601156139e1823d958cc59a072b164e3090a1e5506a43defa43262c1
MD5 091750e80dbcd367a8f64a93808dca74
BLAKE2b-256 fabc41a27eca1de31bbdbf45f0b7f9e70d57316935f57db65f0709e9537a317e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-musllinux_1_2_i686.whl
    • Subject digest: 9a113b9a601156139e1823d958cc59a072b164e3090a1e5506a43defa43262c1
    • Transparency log index: 147803112
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 7340cd584b019d5d551f7ae1e6c290ee1152083c3769348bfa28a752eb2dd3b4
MD5 b23d001323dd60e78f291c58bdbc7e17
BLAKE2b-256 1a226ac57f84f0bcc7d958d6d4c53e9887564a339a62ade5180c190f1e96e8a4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-musllinux_1_2_armv7l.whl
    • Subject digest: 7340cd584b019d5d551f7ae1e6c290ee1152083c3769348bfa28a752eb2dd3b4
    • Transparency log index: 147803196
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a3ec6f1bbdbfe35d6732a19d284fd285b9798fc20082df5d34a8ad5926d752c2
MD5 35ae21309f92a85fbdd3163f3bc18b3e
BLAKE2b-256 1d80812d5d3a1eb2eaf2a31082edc69dc5a30d0185f68ebf4ceedaa89590c584

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-musllinux_1_2_aarch64.whl
    • Subject digest: a3ec6f1bbdbfe35d6732a19d284fd285b9798fc20082df5d34a8ad5926d752c2
    • Transparency log index: 147803150
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ea1f18411ba46eb2221138f7a79fafe87d06b33b533b49f8e432ed91890c6d43
MD5 5b419fd15ae7420f8e1a4a1268d9165f
BLAKE2b-256 b8a954f31e806e61b1ca4dbfff59dc9c8644552f90cf8b392c58364960019a26

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-manylinux_2_28_x86_64.whl
    • Subject digest: ea1f18411ba46eb2221138f7a79fafe87d06b33b533b49f8e432ed91890c6d43
    • Transparency log index: 147803155
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9f3c43ddfba92ef73904436c2bf33ee617da03be2fcb1636275dc8ca33b86fc9
MD5 fbad9f1b428e0aa961fe7429c88e3a51
BLAKE2b-256 d5906f53708bf62f39d3a11671857debed5292c678de035a0604c46fe0ae801f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-manylinux_2_28_aarch64.whl
    • Subject digest: 9f3c43ddfba92ef73904436c2bf33ee617da03be2fcb1636275dc8ca33b86fc9
    • Transparency log index: 147803192
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 754c9f6105928331aa39cdf36933f11bcdad9df9dc47aa2085fd7be003922a01
MD5 86caa54c3dde127e5a7ba675c9c76ea1
BLAKE2b-256 b4e2fae79eb69bd5083fce786a888ed89ff42a3faaebd1a85a50b3c0ec26f807

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 754c9f6105928331aa39cdf36933f11bcdad9df9dc47aa2085fd7be003922a01
    • Transparency log index: 147803206
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 48804d0922288cf387896b14829f86be93b7a6afc39ca0a71f2db6cbaa71295f
MD5 f03601307af1211333dd24d5a7e7b320
BLAKE2b-256 5d7a22c9b75e488cf335ae96dcbcc756741a9751898da2233ea9471fb9b50c68

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 48804d0922288cf387896b14829f86be93b7a6afc39ca0a71f2db6cbaa71295f
    • Transparency log index: 147803093
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d1293c509728fb6c5548fdbdd50b0d10abc893813942861abd8656dbf80da389
MD5 fdf2c1debf7c071a9d1cb0af76cc140b
BLAKE2b-256 1003b5c2e6f07a325b3513a58040422741d47a7aade137cbe62525d4821cae51

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: d1293c509728fb6c5548fdbdd50b0d10abc893813942861abd8656dbf80da389
    • Transparency log index: 147803151
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7c551043bb03b8945a63c2f7b2327058b7cd74832e4f4a33f19d6e8e85785428
MD5 2cdc674b6164967deacea6d25c5431e1
BLAKE2b-256 05cd441d66350db3f90e9bb7a66758d04cc209b27938b1a472e60c93611a0215

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-macosx_11_0_arm64.whl
    • Subject digest: 7c551043bb03b8945a63c2f7b2327058b7cd74832e4f4a33f19d6e8e85785428
    • Transparency log index: 147803138
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fa613e7df522ff0bd54675cca9a4b79797d9bb33d1aab02a4429c88eae699c01
MD5 2af91a1d21431719f0456bb7ec6eb10c
BLAKE2b-256 80436f218b33f414ea80b81994fc94121a87884ef1d445f6aba7c2ed094888fe

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-macosx_10_9_x86_64.whl
    • Subject digest: fa613e7df522ff0bd54675cca9a4b79797d9bb33d1aab02a4429c88eae699c01
    • Transparency log index: 147803146
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4f655777f195ef771dc834014537875ea62be8b9c7702d880312f98b518a011e
MD5 bdd36ed1c4180109f5268960c803be22
BLAKE2b-256 47cc38525511ef0efb1f78d6122b74fd35d601cf98fcf44cd5d82ec97ca9e02d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp39-cp39-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp39-cp39-macosx_10_9_universal2.whl
    • Subject digest: 4f655777f195ef771dc834014537875ea62be8b9c7702d880312f98b518a011e
    • Transparency log index: 147803109
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c9d91ce4ab30a1b4c83db34d1788aac9ebc5ac14f84e97f2c832c8ea2fcbe096
MD5 2d625d9e3b24f8f0e04f6d574f4b3519
BLAKE2b-256 18d78ce943b42db5599204e5b225697ff82da4d2886382120bd18ff0c240caa4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-win_amd64.whl
    • Subject digest: c9d91ce4ab30a1b4c83db34d1788aac9ebc5ac14f84e97f2c832c8ea2fcbe096
    • Transparency log index: 147803134
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 52.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 66328483daf0963d22c6d6f54eec0f7ce14e87e48cdf35c12e2208418a41919e
MD5 871f51d050d318e679a6a487247e800f
BLAKE2b-256 9e7a5491310e7524b949cb0bbfc533e699c9d0a9487ecabc941f7be1117c34a6

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-win32.whl
    • Subject digest: 66328483daf0963d22c6d6f54eec0f7ce14e87e48cdf35c12e2208418a41919e
    • Transparency log index: 147803135
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4c31f94ad2aef23a7dbac62b9f7f66725a456c1da54a0ecdb4a421cc3bf77dd8
MD5 fce1f6c1def771e79920e3201dddeb41
BLAKE2b-256 1d8c4e5fea0e9e656dd441455336a1354bd962a828901361bddfb413885a74cc

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-musllinux_1_2_x86_64.whl
    • Subject digest: 4c31f94ad2aef23a7dbac62b9f7f66725a456c1da54a0ecdb4a421cc3bf77dd8
    • Transparency log index: 147803108
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 aa7af02eb5d9239cdf3e8050af2be29eb6eef7b785ce11ce1dd0e04a4f04686e
MD5 98d593ee50b68e5010b948792ff9bebf
BLAKE2b-256 78f2df51be20e40d111f1551bc8da9c1ee32c6c69098e1056136d4c19429756d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-musllinux_1_2_s390x.whl
    • Subject digest: aa7af02eb5d9239cdf3e8050af2be29eb6eef7b785ce11ce1dd0e04a4f04686e
    • Transparency log index: 147803211
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 2f911791402dd7aa1936ee70c1a234602ee819cce74e63ef6b98bb81c20a09a1
MD5 acdcaaac2287f798e6acda5cf0d04808
BLAKE2b-256 81f55fbe4a438795e4377c78fa8fddef4ed750397fde5b2a58f5bfa761fb7fb5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-musllinux_1_2_ppc64le.whl
    • Subject digest: 2f911791402dd7aa1936ee70c1a234602ee819cce74e63ef6b98bb81c20a09a1
    • Transparency log index: 147803173
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 96abf6561fbb4efd33a3c099276bdb4242b6aae59ada43360edbb2d412fcd680
MD5 460bbe2823f8c35bacb0a2b99dba66c4
BLAKE2b-256 57cf6c25aaf1c9de7c6e13fc7e4db7080516bc0f4ff706092fe3276cf7c21fc8

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-musllinux_1_2_i686.whl
    • Subject digest: 96abf6561fbb4efd33a3c099276bdb4242b6aae59ada43360edbb2d412fcd680
    • Transparency log index: 147803088
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 5923280f58075e8e0082919f5bab403e0312038366913f019fb90835d02beb38
MD5 023ff54d2fbbdd22e311a1c80783a0d4
BLAKE2b-256 64364b522779eacceb7d108065e369d40862548aeb1f36a2f48e56776f78c043

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-musllinux_1_2_armv7l.whl
    • Subject digest: 5923280f58075e8e0082919f5bab403e0312038366913f019fb90835d02beb38
    • Transparency log index: 147803191
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9b34f975435e8312efaf76e904eb2639c435938fbef31d94dcbaf7a89471f745
MD5 61d9d8e5e915f22a9009ad0d80a217b8
BLAKE2b-256 3608cedd90bfdddb8f9279e35ce7baa560cfd7fcf3193e36610c024ceb7f98f5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-musllinux_1_2_aarch64.whl
    • Subject digest: 9b34f975435e8312efaf76e904eb2639c435938fbef31d94dcbaf7a89471f745
    • Transparency log index: 147803184
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9b5c91e71234708b9c9f0b5d0cf48ef906b94ea71c5523f65ac262131478a30d
MD5 8ef3ca08aa60201c73f52f63a4bf8c9b
BLAKE2b-256 8c29d840f61b9d0ffd23d30263f0e75f4d13740980ab37833c990b4481ad1b38

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-manylinux_2_28_x86_64.whl
    • Subject digest: 9b5c91e71234708b9c9f0b5d0cf48ef906b94ea71c5523f65ac262131478a30d
    • Transparency log index: 147803161
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 cd4f0c8748e6b483677284d578dcee8fb1a23c39220839924f02d8148353d8c3
MD5 ec8fd52af7bc83c21e1f268f01c09de8
BLAKE2b-256 2b5556d4e2ab80a1418ff30b23203dd360c8e234d45a72369861584d8762e890

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-manylinux_2_28_aarch64.whl
    • Subject digest: cd4f0c8748e6b483677284d578dcee8fb1a23c39220839924f02d8148353d8c3
    • Transparency log index: 147803143
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d78f1db6c1b38d01700bba2c8d7463b816a931ebac8338c750dd120a46907926
MD5 ea74e3ad8cd371cd54bd5cab69bb3ed2
BLAKE2b-256 964742c762d9a43f578c9109f259012c0ebc3775fff736461042faa94ba61ffb

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: d78f1db6c1b38d01700bba2c8d7463b816a931ebac8338c750dd120a46907926
    • Transparency log index: 147803172
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2d5868b9d5e65f91711d923dc254a436fa46b6f47f61bed13e2108612da6a65b
MD5 28b93536036478aafa86199d1c2ea0c7
BLAKE2b-256 f42b654e14f82bb6a37ae2f6eae3c68aa7f5a1988b02808cc0d2e44e4caf5b14

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 2d5868b9d5e65f91711d923dc254a436fa46b6f47f61bed13e2108612da6a65b
    • Transparency log index: 147803208
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 65d7886c8513b2c3638b75df322f074e0f61b9787fa8cbe9b2e6bce980a45772
MD5 ce78a95ceb938357d94b0b935f83347d
BLAKE2b-256 62e059b1a51dcad7ee3234e2bd31d95bf72b26b17bc98c5cc4dd30a2453d0b57

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 65d7886c8513b2c3638b75df322f074e0f61b9787fa8cbe9b2e6bce980a45772
    • Transparency log index: 147803139
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1fe62c1b84f7f4f30cb5b892a634570d1082f725f08f27c9f33c7796fadc68c9
MD5 e69a01d32992a58909d40004f956e763
BLAKE2b-256 e62e62e5aef1626413d93247ac49aacc94fb9e792e0ce90c8d5c36b13646b96d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-macosx_11_0_arm64.whl
    • Subject digest: 1fe62c1b84f7f4f30cb5b892a634570d1082f725f08f27c9f33c7796fadc68c9
    • Transparency log index: 147803180
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2173c5ecb49a9a4f9ebc0fdb773a7f783201b0d807e798f9e4e21ded31c9e5d7
MD5 ee26d18c1e632a8ddc4d0b5e8ffd6092
BLAKE2b-256 c34a059d2151f840d9f44e19d470706628b9e71453ab659f3c91fbdbb2b7323f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-macosx_10_9_x86_64.whl
    • Subject digest: 2173c5ecb49a9a4f9ebc0fdb773a7f783201b0d807e798f9e4e21ded31c9e5d7
    • Transparency log index: 147803132
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 02f35fee6b2534c40178607fa7fac5b7dfe599c946f7d7ae24ddcab7cedd1a21
MD5 4d430e3da4b67de0df4834148239d0b3
BLAKE2b-256 c87ad8bb3cdc8f3bd2107f1fc532f291d75fffabf4fe31f3162e2317a2efe70a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp38-cp38-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp38-cp38-macosx_10_9_universal2.whl
    • Subject digest: 02f35fee6b2534c40178607fa7fac5b7dfe599c946f7d7ae24ddcab7cedd1a21
    • Transparency log index: 147803159
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0cb86904381c1dd131877ac4840916fa1a03c0ad14f89b587603dbbaab8e1c35
MD5 54442bcadcd0bcba6d28a43d8bee7e41
BLAKE2b-256 cbb5bd0582cac3589b2ed479c526ce214b0d159e4d1ff3c31b80dea382ed8539

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp37-cp37m-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp37-cp37m-win_amd64.whl
    • Subject digest: 0cb86904381c1dd131877ac4840916fa1a03c0ad14f89b587603dbbaab8e1c35
    • Transparency log index: 147803094
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: simsimd-6.0.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 52.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 86ba9139fed1cb213b5f76ef7986f7ddef32f35e59e9b6d0719bdfe1e8f54733
MD5 4b3e309579c04a7d94552fc32fdcca55
BLAKE2b-256 9ddac1e013fba099b05202f3a891e8ae6b51670f236bd7e9e6e443e23852a631

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp37-cp37m-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp37-cp37m-win32.whl
    • Subject digest: 86ba9139fed1cb213b5f76ef7986f7ddef32f35e59e9b6d0719bdfe1e8f54733
    • Transparency log index: 147803107
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f540c378781621c6bf824d2fa1576e164779f692f81e57f606a74c3bacf8a000
MD5 3a558d1fa76e7004e53dd4c1a1df5a1a
BLAKE2b-256 9bf89eaf07d0fa4c900e883788b0603df704f83ae9278446bc347be7088e580d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp37-cp37m-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp37-cp37m-musllinux_1_2_x86_64.whl
    • Subject digest: f540c378781621c6bf824d2fa1576e164779f692f81e57f606a74c3bacf8a000
    • Transparency log index: 147803183
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp37-cp37m-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp37-cp37m-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 cfbd8ff9068c957153a822fd07f3a3e6540e64b4a0da28bae55d9dfcb58b7e15
MD5 e2935a42cf27bcc502f2056d5a6f7687
BLAKE2b-256 15116e28585d6a1d41259efd410add7b057a03cdf5a537ff77f02dc99fbce02c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp37-cp37m-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp37-cp37m-musllinux_1_2_s390x.whl
    • Subject digest: cfbd8ff9068c957153a822fd07f3a3e6540e64b4a0da28bae55d9dfcb58b7e15
    • Transparency log index: 147803089
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp37-cp37m-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp37-cp37m-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 8d4f1bf07551a7bd873cdd98e1c067c9648ff297a1d604d6df7b45db510c7cc0
MD5 e1e6b5b678e0ff3dfa51950f0be0e3f4
BLAKE2b-256 d3399d01c28ccdc6aefcd374347c7d428cc3adafcd269e047050627a7da548e2

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp37-cp37m-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp37-cp37m-musllinux_1_2_ppc64le.whl
    • Subject digest: 8d4f1bf07551a7bd873cdd98e1c067c9648ff297a1d604d6df7b45db510c7cc0
    • Transparency log index: 147803123
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 8867e6a501aeab3131c49b7737b6209831f40c54c9cb630666894c9657e0ec96
MD5 a6c094d8aab18267f6cf98aef2ead751
BLAKE2b-256 cd7063b727dc54835f1523a8f5b844a7f9c8425613d770bc1983f0ab5d9452bd

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp37-cp37m-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp37-cp37m-musllinux_1_2_i686.whl
    • Subject digest: 8867e6a501aeab3131c49b7737b6209831f40c54c9cb630666894c9657e0ec96
    • Transparency log index: 147803092
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp37-cp37m-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp37-cp37m-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 a91167048c7b9370e14244c8e53998786df880b0eac437315c52707ee5569cbf
MD5 02dc227e439154a8ffe5c62f493fda6f
BLAKE2b-256 4d7f7c29b22a2735788cd593aec4bb39c275f8e6e659bcc3177ab8459c9e9965

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp37-cp37m-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp37-cp37m-musllinux_1_2_armv7l.whl
    • Subject digest: a91167048c7b9370e14244c8e53998786df880b0eac437315c52707ee5569cbf
    • Transparency log index: 147803166
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b9810580a299db2d68e8be5d4a3bd323ae1d96b79bc39c6ed0703d4de2805bed
MD5 ce5afb5245c76df15563b645d434b1e3
BLAKE2b-256 0397f40fd01f840c0a3425594be104d91c653946981d82ea7022d137329bc121

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp37-cp37m-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp37-cp37m-musllinux_1_2_aarch64.whl
    • Subject digest: b9810580a299db2d68e8be5d4a3bd323ae1d96b79bc39c6ed0703d4de2805bed
    • Transparency log index: 147803194
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 9da95e4e2d569fb84604b43113592894803bed4b04fbd10fa43e45b61fad25f8
MD5 e360a654dc4f9101a98eb170e5c3e32c
BLAKE2b-256 09bfb37beeee8921a540ac2f62ae7580a47655c67ae88835bb5fedaedaf8f6a7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp37-cp37m-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp37-cp37m-manylinux_2_28_x86_64.whl
    • Subject digest: 9da95e4e2d569fb84604b43113592894803bed4b04fbd10fa43e45b61fad25f8
    • Transparency log index: 147803163
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2e147d22fa2bace960993d4f0228fe89da7875539a2148f35c73435848e4b498
MD5 a0acb21d45f8011ff9f541a5146c9213
BLAKE2b-256 4e441e3ebd5977deaaaab3eb49631c37d30e3e17b2800e0bdda7aff5937be65b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp37-cp37m-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp37-cp37m-manylinux_2_28_aarch64.whl
    • Subject digest: 2e147d22fa2bace960993d4f0228fe89da7875539a2148f35c73435848e4b498
    • Transparency log index: 147803121
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f88294305d50f5dcc407ce2fcb2d6ad35fc3f9f26e198f5f6af4f969a0158abe
MD5 c03e26a0f647b4ccbe062c6ac760d492
BLAKE2b-256 bfb7e2ad401bd2965cc44654e3ff4240e0b4cf1ab1af7e48350b8db386998bf9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp37-cp37m-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: f88294305d50f5dcc407ce2fcb2d6ad35fc3f9f26e198f5f6af4f969a0158abe
    • Transparency log index: 147803170
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a14ea718a3afbf302200d506e26891ac8638bc78c6918aeae63e53e99bf16705
MD5 824e0284bc52fb75e16f9f431f7a952a
BLAKE2b-256 251f41cd1720864fad47d35e0b5c87e7da20a601ddd44c50541213fbaa0ff2b9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp37-cp37m-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: a14ea718a3afbf302200d506e26891ac8638bc78c6918aeae63e53e99bf16705
    • Transparency log index: 147803182
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1dfeada4845ba1e93223fb1dff86b4ba3fe25f567ecaf41061856932c55751e7
MD5 1935ab415b86775fe7d77a3b516b6e06
BLAKE2b-256 db80601232a543442e2b52b69ba406c66e9533c764644f1ec6b5c299aef0806d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 1dfeada4845ba1e93223fb1dff86b4ba3fe25f567ecaf41061856932c55751e7
    • Transparency log index: 147803200
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e8cbcaee8234989d7f6360235c1dc3247e869dc005869615b74d3ea8514efc00
MD5 6e87870d930b0429b4e43389a47d84d1
BLAKE2b-256 320d2e05c96c65028798f8ae2ccf23577957fdacd0d5081b8e156a96b95954dd

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.3-cp37-cp37m-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.3-cp37-cp37m-macosx_10_9_x86_64.whl
    • Subject digest: e8cbcaee8234989d7f6360235c1dc3247e869dc005869615b74d3ea8514efc00
    • Transparency log index: 147803174
    • Transparency log integration time:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page