Skip to main content

Portable mixed-precision BLAS-like vector math library for x86 and ARM

Project description

SimSIMD banner

Computing dot-products, similarity measures, and distances between low- and high-dimensional vectors is ubiquitous in Machine Learning, Scientific Computing, Geo-Spatial Analysis, and Information Retrieval. These algorithms generally have linear complexity in time, constant or linear complexity in space, and are data-parallel. In other words, it is easily parallelizable and vectorizable and often available in packages like BLAS (level 1) and LAPACK, as well as higher-level numpy and scipy Python libraries. Ironically, even with decades of evolution in compilers and numerical computing, most libraries can be 3-200x slower than hardware potential even on the most popular hardware, like 64-bit x86 and Arm CPUs. Moreover, most lack mixed-precision support, which is crucial for modern AI! The rare few that support minimal mixed precision, run only on one platform, and are vendor-locked, by companies like Intel and Nvidia. SimSIMD provides an alternative. 1️⃣ SimSIMD functions are practically as fast as memcpy. 2️⃣ Unlike BLAS, most kernels are designed for mixed-precision and bit-level operations. 3️⃣ SimSIMD compiles to more platforms than NumPy (105 vs 35) and has more backends than most BLAS implementations, and more high-level interfaces than most libraries.

Features

SimSIMD (Arabic: "سيمسيم دي") is a mixed-precision math library of over 200 SIMD-optimized kernels extensively used in AI, Search, and DBMS workloads. Named after the iconic "Open Sesame" command that opened doors to treasure in Ali Baba and the Forty Thieves, SimSimd can help you 10x the cost-efficiency of your computational pipelines. Implemented distance functions include:

  • Euclidean (L2) and Cosine (Angular) spatial distances for Vector Search. docs
  • Dot-Products for real & complex vectors for DSP & Quantum computing. docs
  • Hamming (~ Manhattan) and Jaccard (~ Tanimoto) bit-level distances. docs
  • Set Intersections for Sparse Vectors and Text Analysis. docs
  • Mahalanobis distance and Quadratic forms for Scientific Computing. docs
  • Kullback-Leibler and Jensen–Shannon divergences for probability distributions. docs
  • Fused-Multiply-Add (FMA) and Weighted Sums to replace BLAS level 1 functions. docs
  • For Levenshtein, Needleman–Wunsch, and Smith-Waterman, check StringZilla.
  • 🔜 Haversine and Vincenty's formulae for Geospatial Analysis.

Moreover, SimSIMD...

  • handles float64, float32, float16, and bfloat16 real & complex vectors.
  • handles int8 integral, int4 sub-byte, and b8 binary vectors.
  • handles sparse uint32 and uint16 sets, and weighted sparse vectors.
  • is a zero-dependency header-only C 99 library.
  • has Python, Rust, JS, and Swift bindings.
  • has Arm backends for NEON, Scalable Vector Extensions (SVE), and SVE2.
  • has x86 backends for Haswell, Skylake, Ice Lake, Genoa, and Sapphire Rapids.
  • with both compile-time and runtime CPU feature detection easily integrates anywhere!

Due to the high-level of fragmentation of SIMD support in different x86 CPUs, SimSIMD generally uses the names of select Intel CPU generations for its backends. They, however, also work on AMD CPUs. Intel Haswell is compatible with AMD Zen 1/2/3, while AMD Genoa Zen 4 covers AVX-512 instructions added to Intel Skylake and Ice Lake. You can learn more about the technical implementation details in the following blog-posts:

Benchmarks

For reference, we use 1536-dimensional vectors, like the embeddings produced by the OpenAI Ada API. Comparing the serial code throughput produced by GCC 12 to hand-optimized kernels in SimSIMD, we see the following single-core improvements for the two most common vector-vector similarity metrics - the Cosine similarity and the Euclidean distance:

Type Apple M2 Pro Intel Sapphire Rapids AWS Graviton 4
float64 18.5 → 28.8 GB/s
+ 56 %
21.9 → 41.4 GB/s
+ 89 %
20.7 → 41.3 GB/s
+ 99 %
float32 9.2 → 29.6 GB/s
+ 221 %
10.9 → 95.8 GB/s
+ 779 %
4.9 → 41.9 GB/s
+ 755 %
float16 4.6 → 14.6 GB/s
+ 217 %
3.1 → 108.4 GB/s
+ 3,397 %
5.4 → 39.3 GB/s
+ 627 %
bfloat16 4.6 → 26.3 GB/s
+ 472 %
0.8 → 59.5 GB/s
+7,437 %
2.5 → 29.9 GB/s
+ 1,096 %
int8 25.8 → 47.1 GB/s
+ 83 %
33.1 → 65.3 GB/s
+ 97 %
35.2 → 43.5 GB/s
+ 24 %
uint8 32.5 → 66.5 GB/s
+ 105 %

Similar speedups are often observed even when compared to BLAS and LAPACK libraries underlying most numerical computing libraries, including NumPy and SciPy in Python. Broader benchmarking results:

Using SimSIMD in Python

The package is intended to replace the usage of numpy.inner, numpy.dot, and scipy.spatial.distance. Aside from drastic performance improvements, SimSIMD significantly improves accuracy in mixed precision setups. NumPy and SciPy, processing int8, uint8 or float16 vectors, will use the same types for accumulators, while SimSIMD can combine int8 enumeration, int16 multiplication, and int32 accumulation to avoid overflows entirely. The same applies to processing float16 and bfloat16 values with float32 precision.

Installation

Use the following snippet to install SimSIMD and list available hardware acceleration options available on your machine:

pip install simsimd
python -c "import simsimd; print(simsimd.get_capabilities())"   # for hardware introspection
python -c "import simsimd; help(simsimd)"                       # for documentation

With precompiled binaries, SimSIMD ships .pyi interface files for type hinting and static analysis. You can check all the available functions in python/annotations/__init__.pyi.

One-to-One Distance

import simsimd
import numpy as np

vec1 = np.random.randn(1536).astype(np.float32)
vec2 = np.random.randn(1536).astype(np.float32)
dist = simsimd.cosine(vec1, vec2)

Supported functions include cosine, inner, sqeuclidean, hamming, jaccard, kulbackleibler, jensenshannon, and intersect. Dot products are supported for both real and complex numbers:

vec1 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64)
vec2 = np.random.randn(768).astype(np.float64) + 1j * np.random.randn(768).astype(np.float64)

dist = simsimd.dot(vec1.astype(np.complex128), vec2.astype(np.complex128))
dist = simsimd.dot(vec1.astype(np.complex64), vec2.astype(np.complex64))
dist = simsimd.vdot(vec1.astype(np.complex64), vec2.astype(np.complex64)) # conjugate, same as `np.vdot`

Unlike SciPy, SimSIMD allows explicitly stating the precision of the input vectors, which is especially useful for mixed-precision setups. The dtype argument can be passed both by name and as a positional argument:

dist = simsimd.cosine(vec1, vec2, "int8")
dist = simsimd.cosine(vec1, vec2, "float16")
dist = simsimd.cosine(vec1, vec2, "float32")
dist = simsimd.cosine(vec1, vec2, "float64")
dist = simsimd.hamming(vec1, vec2, "bit8")

With other frameworks, like PyTorch, one can get a richer type-system than NumPy, but the lack of good CPython interoperability makes it hard to pass data without copies.

import numpy as np
buf1 = np.empty(8, dtype=np.uint16)
buf2 = np.empty(8, dtype=np.uint16)

# View the same memory region with PyTorch and randomize it
import torch
vec1 = torch.asarray(memoryview(buf1), copy=False).view(torch.bfloat16)
vec2 = torch.asarray(memoryview(buf2), copy=False).view(torch.bfloat16)
torch.randn(8, out=vec1)
torch.randn(8, out=vec2)

# Both libs will look into the same memory buffers and report the same results
dist_slow = 1 - torch.nn.functional.cosine_similarity(vec1, vec2, dim=0)
dist_fast = simsimd.cosine(buf1, buf2, "bf16")

It also allows using SimSIMD for half-precision complex numbers, which NumPy does not support. For that, view data as continuous even-length np.float16 vectors and override type-resolution with complex32 string.

vec1 = np.random.randn(1536).astype(np.float16)
vec2 = np.random.randn(1536).astype(np.float16)
simd.dot(vec1, vec2, "complex32")
simd.vdot(vec1, vec2, "complex32")

When dealing with sparse representations and integer sets, you can apply the intersect function to two 1-dimensional arrays of uint16 or uint32 integers:

from random import randint
import numpy as np
import simsimd as simd

length1, length2 = randint(1, 100), randint(1, 100)
vec1 = np.sort(np.random.randint(0, 1000, length1).astype(np.uint16))
vec2 = np.sort(np.random.randint(0, 1000, length2).astype(np.uint16))

slow_result = len(np.intersect1d(vec1, vec2))
fast_result = simd.intersect(vec1, vec2)
assert slow_result == fast_result

One-to-Many Distances

Every distance function can be used not only for one-to-one but also one-to-many and many-to-many distance calculations. For one-to-many:

vec1 = np.random.randn(1536).astype(np.float32) # rank 1 tensor
batch1 = np.random.randn(1, 1536).astype(np.float32) # rank 2 tensor
batch2 = np.random.randn(100, 1536).astype(np.float32)

dist_rank1 = simsimd.cosine(vec1, batch2)
dist_rank2 = simsimd.cosine(batch1, batch2)

Many-to-Many Distances

All distance functions in SimSIMD can be used to compute many-to-many distances. For two batches of 100 vectors to compute 100 distances, one would call it like this:

batch1 = np.random.randn(100, 1536).astype(np.float32)
batch2 = np.random.randn(100, 1536).astype(np.float32)
dist = simsimd.cosine(batch1, batch2)

Input matrices must have identical shapes. This functionality isn't natively present in NumPy or SciPy, and generally requires creating intermediate arrays, which is inefficient and memory-consuming.

Many-to-Many All-Pairs Distances

One can use SimSIMD to compute distances between all possible pairs of rows across two matrices (akin to scipy.spatial.distance.cdist). The resulting object will have a type DistancesTensor, zero-copy compatible with NumPy and other libraries. For two arrays of 10 and 1,000 entries, the resulting tensor will have 10,000 cells:

import numpy as np
from simsimd import cdist, DistancesTensor

matrix1 = np.random.randn(1000, 1536).astype(np.float32)
matrix2 = np.random.randn(10, 1536).astype(np.float32)
distances: DistancesTensor = simsimd.cdist(matrix1, matrix2, metric="cosine")   # zero-copy, managed by SimSIMD
distances_array: np.ndarray = np.array(distances, copy=True)                    # now managed by NumPy

Elementwise Kernels

SimSIMD also provides mixed-precision elementwise kernels, where the input vectors and the output have the same numeric type, but the intermediate accumulators are of a higher precision.

import numpy as np
from simsimd import fma, wsum

# Let's take two FullHD video frames
first_frame = np.random.randn(1920 * 1024).astype(np.uint8)  
second_frame = np.random.randn(1920 * 1024).astype(np.uint8)
average_frame = np.empty_like(first_frame)
wsum(first_frame, second_frame, alpha=0.5, beta=0.5, out=average_frame)

# Slow analog with NumPy:
slow_average_frame = (0.5 * first_frame + 0.5 * second_frame).astype(np.uint8)

Similarly, the fma takes three arguments and computes the fused multiply-add operation. In applications like Machine Learning you may also benefit from using the "brain-float" format not natively supported by NumPy. In 3D Graphics, for example, we can use FMA to compute the Phong shading model:

# Assume a FullHD frame with random values for simplicity
light_intensity = np.random.rand(1920 * 1080).astype(np.float16)  # Intensity of light on each pixel
diffuse_component = np.random.rand(1920 * 1080).astype(np.float16)  # Diffuse reflectance on the surface
specular_component = np.random.rand(1920 * 1080).astype(np.float16)  # Specular reflectance for highlights
output_color = np.empty_like(light_intensity)  # Array to store the resulting color intensity

# Define the scaling factors for diffuse and specular contributions
alpha = 0.7  # Weight for the diffuse component
beta = 0.3   # Weight for the specular component

# Formula: color = alpha * light_intensity * diffuse_component + beta * specular_component
fma(light_intensity, diffuse_component, specular_component, 
    dtype="float16", # Optional, unless it can't be inferred from the input
    alpha=alpha, beta=beta, out=output_color)

# Slow analog with NumPy for comparison
slow_output_color = (alpha * light_intensity * diffuse_component + beta * specular_component).astype(np.float16)

Multithreading and Memory Usage

By default, computations use a single CPU core. To override this behavior, use the threads argument. Set it to 0 to use all available CPU cores. Here is an example of dealing with large sets of binary vectors:

ndim = 1536 # OpenAI Ada embeddings
matrix1 = np.packbits(np.random.randint(2, size=(10_000, ndim)).astype(np.uint8))
matrix2 = np.packbits(np.random.randint(2, size=(1_000, ndim)).astype(np.uint8))

distances = simsimd.cdist(matrix1, matrix2, 
    metric="hamming",   # Unlike SciPy, SimSIMD doesn't divide by the number of dimensions
    out_dtype="uint8",  # so we can use `uint8` instead of `float64` to save memory.
    threads=0,          # Use all CPU cores with OpenMP.
    dtype="bin8",       # Override input argument type to `bin8` eight-bit words.
)

By default, the output distances will be stored in double-precision float64 floating-point numbers. That behavior may not be space-efficient, especially if you are computing the hamming distance between short binary vectors, that will generally fit into 8x smaller uint8 or uint16 types. To override this behavior, use the dtype argument.

Helper Functions

You can turn specific backends on or off depending on the exact environment. A common case may be avoiding AVX-512 on older AMD CPUs and Intel Ice Lake CPUs to ensure the CPU doesn't change the frequency license and throttle performance.

$ simsimd.get_capabilities()
> {'serial': True, 'neon': False, 'sve': False, 'neon_f16': False, 'sve_f16': False, 'neon_bf16': False, 'sve_bf16': False, 'neon_i8': False, 'sve_i8': False, 'haswell': True, 'skylake': True, 'ice': True, 'genoa': True, 'sapphire': True, 'turin': True}
$ simsimd.disable_capability("sapphire")
$ simsimd.enable_capability("sapphire")

Using Python API with USearch

Want to use it in Python with USearch? You can wrap the raw C function pointers SimSIMD backends into a CompiledMetric and pass it to USearch, similar to how it handles Numba's JIT-compiled code.

from usearch.index import Index, CompiledMetric, MetricKind, MetricSignature
from simsimd import pointer_to_sqeuclidean, pointer_to_cosine, pointer_to_inner

metric = CompiledMetric(
    pointer=pointer_to_cosine("f16"),
    kind=MetricKind.Cos,
    signature=MetricSignature.ArrayArraySize,
)

index = Index(256, metric=metric)

Using SimSIMD in Rust

To install, add the following to your Cargo.toml:

[dependencies]
simsimd = "..."

Before using the SimSIMD library, ensure you have imported the necessary traits and types into your Rust source file. The library provides several traits for different distance/similarity kinds - SpatialSimilarity, BinarySimilarity, and ProbabilitySimilarity.

Spatial Similarity: Cosine and Euclidean Distances

use simsimd::SpatialSimilarity;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0];
    let vector_b: Vec<f32> = vec![4.0, 5.0, 6.0];

    // Compute the cosine similarity between vector_a and vector_b
    let cosine_similarity = f32::cosine(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);

    // Compute the squared Euclidean distance between vector_a and vector_b
    let sq_euclidean_distance = f32::sqeuclidean(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Squared Euclidean Distance: {}", sq_euclidean_distance);
}

Spatial similarity functions are available for f64, f32, f16, and i8 types.

Dot-Products: Inner and Complex Inner Products

use simsimd::SpatialSimilarity;
use simsimd::ComplexProducts;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0, 4.0];
    let vector_b: Vec<f32> = vec![5.0, 6.0, 7.0, 8.0];

    // Compute the inner product between vector_a and vector_b
    let inner_product = SpatialSimilarity::dot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Inner Product: {}", inner_product);

    // Compute the complex inner product between complex_vector_a and complex_vector_b
    let complex_inner_product = ComplexProducts::dot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    let complex_conjugate_inner_product = ComplexProducts::vdot(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Complex Inner Product: {:?}", complex_inner_product); // -18, 69
    println!("Complex C. Inner Product: {:?}", complex_conjugate_inner_product); // 70, -8
}

Complex inner products are available for f64, f32, and f16 types.

Probability Distributions: Jensen-Shannon and Kullback-Leibler Divergences

use simsimd::SpatialSimilarity;

fn main() {
    let vector_a: Vec<f32> = vec![1.0, 2.0, 3.0];
    let vector_b: Vec<f32> = vec![4.0, 5.0, 6.0];

    let cosine_similarity = f32::jensenshannon(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);

    let sq_euclidean_distance = f32::kullbackleibler(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Squared Euclidean Distance: {}", sq_euclidean_distance);
}

Probability similarity functions are available for f64, f32, and f16 types.

Binary Similarity: Hamming and Jaccard Distances

Similar to spatial distances, one can compute bit-level distance functions between slices of unsigned integers:

use simsimd::BinarySimilarity;

fn main() {
    let vector_a = &[0b11110000, 0b00001111, 0b10101010];
    let vector_b = &[0b11110000, 0b00001111, 0b01010101];

    // Compute the Hamming distance between vector_a and vector_b
    let hamming_distance = u8::hamming(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Hamming Distance: {}", hamming_distance);

    // Compute the Jaccard distance between vector_a and vector_b
    let jaccard_distance = u8::jaccard(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Jaccard Distance: {}", jaccard_distance);
}

Binary similarity functions are available only for u8 types.

Half-Precision Floating-Point Numbers

Rust has no native support for half-precision floating-point numbers, but SimSIMD provides a f16 type. It has no functionality - it is a transparent wrapper around u16 and can be used with half or any other half-precision library.

use simsimd::SpatialSimilarity;
use simsimd::f16 as SimF16;
use half::f16 as HalfF16;

fn main() {
    let vector_a: Vec<HalfF16> = ...
    let vector_b: Vec<HalfF16> = ...

    let buffer_a: &[SimF16] = unsafe { std::slice::from_raw_parts(a_half.as_ptr() as *const SimF16, a_half.len()) };
    let buffer_b: &[SimF16] = unsafe { std::slice::from_raw_parts(b_half.as_ptr() as *const SimF16, b_half.len()) };

    // Compute the cosine similarity between vector_a and vector_b
    let cosine_similarity = SimF16::cosine(&vector_a, &vector_b)
        .expect("Vectors must be of the same length");

    println!("Cosine Similarity: {}", cosine_similarity);
}

Half-Precision Brain-Float Numbers

The "brain-float-16" is a popular machine learning format. It's broadly supported in hardware and is very machine-friendly, but software support is still lagging behind. Unlike NumPy, you can already use bf16 datatype in SimSIMD. Luckily, to downcast f32 to bf16 you only have to drop the last 16 bits:

import numpy as np
import simsimd as simd

a = np.random.randn(ndim).astype(np.float32)
b = np.random.randn(ndim).astype(np.float32)

# NumPy doesn't natively support brain-float, so we need a trick!
# Luckily, it's very easy to reduce the representation accuracy
# by simply masking the low 16-bits of our 32-bit single-precision
# numbers. We can also add `0x8000` to round the numbers.
a_f32rounded = ((a.view(np.uint32) + 0x8000) & 0xFFFF0000).view(np.float32)
b_f32rounded = ((b.view(np.uint32) + 0x8000) & 0xFFFF0000).view(np.float32)

# To represent them as brain-floats, we need to drop the second half
a_bf16 = np.right_shift(a_f32rounded.view(np.uint32), 16).astype(np.uint16)
b_bf16 = np.right_shift(b_f32rounded.view(np.uint32), 16).astype(np.uint16)

# Now we can compare the results
expected = np.inner(a_f32rounded, b_f32rounded)
result = simd.inner(a_bf16, b_bf16, "bf16")

Dynamic Dispatch in Rust

SimSIMD provides a dynamic dispatch mechanism to select the most advanced micro-kernel for the current CPU. You can query supported backends and use the SimSIMD::capabilities function to select the best one.

println!("uses neon: {}", capabilities::uses_neon());
println!("uses sve: {}", capabilities::uses_sve());
println!("uses haswell: {}", capabilities::uses_haswell());
println!("uses skylake: {}", capabilities::uses_skylake());
println!("uses ice: {}", capabilities::uses_ice());
println!("uses genoa: {}", capabilities::uses_genoa());
println!("uses sapphire: {}", capabilities::uses_sapphire());
println!("uses turin: {}", capabilities::uses_turin());

Using SimSIMD in JavaScript

To install, choose one of the following options depending on your environment:

  • npm install --save simsimd
  • yarn add simsimd
  • pnpm add simsimd
  • bun install simsimd

The package is distributed with prebuilt binaries, but if your platform is not supported, you can build the package from the source via npm run build. This will automatically happen unless you install the package with the --ignore-scripts flag or use Bun. After you install it, you will be able to call the SimSIMD functions on various TypedArray variants:

const { sqeuclidean, cosine, inner, hamming, jaccard } = require('simsimd');

const vectorA = new Float32Array([1.0, 2.0, 3.0]);
const vectorB = new Float32Array([4.0, 5.0, 6.0]);

const distance = sqeuclidean(vectorA, vectorB);
console.log('Squared Euclidean Distance:', distance);

Other numeric types and precision levels are supported as well. For double-precision floating-point numbers, use Float64Array:

const vectorA = new Float64Array([1.0, 2.0, 3.0]);
const vectorB = new Float64Array([4.0, 5.0, 6.0]);
const distance = cosine(vectorA, vectorB);

When doing machine learning and vector search with high-dimensional vectors you may want to quantize them to 8-bit integers. You may want to project values from the $[-1, 1]$ range to the $[-127, 127]$ range and then cast them to Int8Array:

const quantizedVectorA = new Int8Array(vectorA.map(v => (v * 127)));
const quantizedVectorB = new Int8Array(vectorB.map(v => (v * 127)));
const distance = cosine(quantizedVectorA, quantizedVectorB);

A more extreme quantization case would be to use binary vectors. You can map all positive values to 1 and all negative values and zero to 0, packing eight values into a single byte. After that, Hamming and Jaccard distances can be computed.

const { toBinary, hamming } = require('simsimd');

const binaryVectorA = toBinary(vectorA);
const binaryVectorB = toBinary(vectorB);
const distance = hamming(binaryVectorA, binaryVectorB);

Using SimSIMD in Sift

To install, simply add the following dependency to you Package.swift:

dependencies: [
    .package(url: "https://github.com/ashvardanian/simsimd")
]

The package provides the most common spatial metrics for Int8, Float16, Float32, and Float64 vectors.

import SimSIMD

let vectorA: [Int8] = [1, 2, 3]
let vectorB: [Int8] = [4, 5, 6]

let cosineSimilarity = vectorA.cosine(vectorB)  // Computes the cosine similarity
let dotProduct = vectorA.dot(vectorB)           // Computes the dot product
let sqEuclidean = vectorA.sqeuclidean(vectorB)  // Computes the squared Euclidean distance

Using SimSIMD in C

For integration within a CMake-based project, add the following segment to your CMakeLists.txt:

FetchContent_Declare(
    simsimd
    GIT_REPOSITORY https://github.com/ashvardanian/simsimd.git
    GIT_SHALLOW TRUE
)
FetchContent_MakeAvailable(simsimd)

After that, you can use the SimSIMD library in your C code in several ways. Simplest of all, you can include the headers, and the compiler will automatically select the most recent CPU extensions that SimSIMD will use.

#include <simsimd/simsimd.h>

int main() {
    simsimd_f32_t vector_a[1536];
    simsimd_f32_t vector_b[1536];
    simsimd_kernel_punned_t distance_function = simsimd_metric_punned(
        simsimd_metric_cos_k,   // Metric kind, like the angular cosine distance
        simsimd_datatype_f32_k, // Data type, like: f16, f32, f64, i8, b8, and complex variants
        simsimd_cap_any_k);     // Which CPU capabilities are we allowed to use
    simsimd_distance_t distance;
    distance_function(vector_a, vector_b, 1536, &distance);
    return 0;
}

Dynamic Dispatch in C

To avoid hard-coding the backend, you can rely on c/lib.c to prepackage all possible backends in one binary, and select the most recent CPU features at runtime. That feature of the C library is called dynamic dispatch and is extensively used in the Python, JavaScript, and Rust bindings. To test which CPU features are available on the machine at runtime, use the following APIs:

int uses_dynamic_dispatch = simsimd_uses_dynamic_dispatch(); // Check if dynamic dispatch was enabled
simsimd_capability_t capabilities = simsimd_capabilities();  // Returns a bitmask

int uses_neon = simsimd_uses_neon();
int uses_sve = simsimd_uses_sve();
int uses_haswell = simsimd_uses_haswell();
int uses_skylake = simsimd_uses_skylake();
int uses_ice = simsimd_uses_ice();
int uses_genoa = simsimd_uses_genoa();
int uses_sapphire = simsimd_uses_sapphire();

To override compilation settings and switch between runtime and compile-time dispatch, define the following macro:

#define SIMSIMD_DYNAMIC_DISPATCH 1 // or 0

Spatial Distances: Cosine and Euclidean Distances

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_i8_t i8[1536];
    simsimd_distance_t distance;

    // Cosine distance between two vectors
    simsimd_cos_i8(i8s, i8s, 1536, &distance);
    simsimd_cos_f16(f16s, f16s, 1536, &distance);
    simsimd_cos_f32(f32s, f32s, 1536, &distance);
    simsimd_cos_f64(f64s, f64s, 1536, &distance);
    
    // Euclidean distance between two vectors
    simsimd_l2sq_i8(i8s, i8s, 1536, &distance);
    simsimd_l2sq_f16(f16s, f16s, 1536, &distance);
    simsimd_l2sq_f32(f32s, f32s, 1536, &distance);
    simsimd_l2sq_f64(f64s, f64s, 1536, &distance);

    return 0;
}

Dot-Products: Inner and Complex Inner Products

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_distance_t distance;

    // Inner product between two vectors
    simsimd_dot_f16(f16s, f16s, 1536, &distance);
    simsimd_dot_f32(f32s, f32s, 1536, &distance);
    simsimd_dot_f64(f64s, f64s, 1536, &distance);

    // Complex inner product between two vectors
    simsimd_dot_f16c(f16s, f16s, 1536, &distance);
    simsimd_dot_f32c(f32s, f32s, 1536, &distance);
    simsimd_dot_f64c(f64s, f64s, 1536, &distance);

    // Complex conjugate inner product between two vectors
    simsimd_vdot_f16c(f16s, f16s, 1536, &distance);
    simsimd_vdot_f32c(f32s, f32s, 1536, &distance);
    simsimd_vdot_f64c(f64s, f64s, 1536, &distance);
    return 0;
}

Binary Distances: Hamming and Jaccard Distances

#include <simsimd/simsimd.h>

int main() {
    simsimd_b8_t b8s[1536 / 8]; // 8 bits per word
    simsimd_distance_t distance;
    simsimd_hamming_b8(b8s, b8s, 1536 / 8, &distance);
    simsimd_jaccard_b8(b8s, b8s, 1536 / 8, &distance);
    return 0;
}

Probability Distributions: Jensen-Shannon and Kullback-Leibler Divergences

#include <simsimd/simsimd.h>

int main() {
    simsimd_f64_t f64s[1536];
    simsimd_f32_t f32s[1536];
    simsimd_f16_t f16s[1536];
    simsimd_distance_t distance;

    // Jensen-Shannon divergence between two vectors
    simsimd_js_f16(f16s, f16s, 1536, &distance);
    simsimd_js_f32(f32s, f32s, 1536, &distance);
    simsimd_js_f64(f64s, f64s, 1536, &distance);

    // Kullback-Leibler divergence between two vectors
    simsimd_kl_f16(f16s, f16s, 1536, &distance);
    simsimd_kl_f32(f32s, f32s, 1536, &distance);
    simsimd_kl_f64(f64s, f64s, 1536, &distance);
    return 0;
}

Half-Precision Floating-Point Numbers

If you aim to utilize the _Float16 functionality with SimSIMD, ensure your development environment is compatible with C 11. For other SimSIMD functionalities, C 99 compatibility will suffice. To explicitly disable half-precision support, define the following macro before imports:

#define SIMSIMD_NATIVE_F16 0 // or 1
#define SIMSIMD_NATIVE_BF16 0 // or 1
#include <simsimd/simsimd.h>

Compilation Settings and Debugging

SIMSIMD_DYNAMIC_DISPATCH:

By default, SimSIMD is a header-only library. But if you are running on different generations of devices, it makes sense to pre-compile the library for all supported generations at once, and dispatch at runtime. This flag does just that and is used to produce the simsimd.so shared library, as well as the Python and other bindings.

For Arm: SIMSIMD_TARGET_NEON, SIMSIMD_TARGET_SVE, SIMSIMD_TARGET_SVE2, SIMSIMD_TARGET_NEON_F16, SIMSIMD_TARGET_SVE_F16, SIMSIMD_TARGET_NEON_BF16, SIMSIMD_TARGET_SVE_BF16. For x86: (SIMSIMD_TARGET_HASWELL, SIMSIMD_TARGET_SKYLAKE, SIMSIMD_TARGET_ICE, SIMSIMD_TARGET_GENOA, SIMSIMD_TARGET_SAPPHIRE, SIMSIMD_TARGET_TURIN, SIMSIMD_TARGET_SIERRA.

By default, SimSIMD automatically infers the target architecture and pre-compiles as many kernels as possible. In some cases, you may want to explicitly disable some of the kernels. Most often it's due to compiler support issues, like the lack of some recent intrinsics or low-precision numeric types. In other cases, you may want to disable some kernels to speed up the compilation process and trim the binary size.

SIMSIMD_SQRT, SIMSIMD_RSQRT, SIMSIMD_LOG:

By default, for non-SIMD backends, SimSIMD may use libc functions like sqrt and log. Those are generally very accurate, but slow, and introduce a dependency on the C standard library. To avoid that you can override those definitions with your custom implementations, like: #define SIMSIMD_RSQRT(x) (1 / sqrt(x)).

Algorithms & Design Decisions 📚

In general there are a few principles that SimSIMD follows:

  • Avoid loop unrolling.
  • Never allocate memory.
  • Never throw exceptions or set errno.
  • Keep all function arguments the size of the pointer.
  • Avoid returning from public interfaces, use out-arguments instead.
  • Don't over-optimize for old CPUs and single- and double-precision floating-point numbers.
  • Prioritize mixed-precision and integer operations, and new ISA extensions.
  • Prefer saturated arithmetic and avoid overflows.

Possibly, in the future:

  • Best effort computation silencing NaN components in low-precision inputs.
  • Detect overflows and report the distance with a "signaling" NaN.

Last, but not the least - don't build unless there is a demand for it. So if you have a specific use-case, please open an issue or a pull request, and ideally, bring in more users with similar needs.

Cosine Similarity, Reciprocal Square Root, and Newton-Raphson Iteration

The cosine similarity is the most common and straightforward metric used in machine learning and information retrieval. Interestingly, there are multiple ways to shoot yourself in the foot when computing it. The cosine similarity is the inverse of the cosine distance, which is the cosine of the angle between two vectors.

\text{CosineSimilarity}(a, b) = \frac{a \cdot b}{\|a\| \cdot \|b\|}
\text{CosineDistance}(a, b) = 1 - \frac{a \cdot b}{\|a\| \cdot \|b\|}

In NumPy terms, SimSIMD implementation is similar to:

import numpy as np

def cos_numpy(a: np.ndarray, b: np.ndarray) -> float:
    ab, a2, b2 = np.dot(a, b), np.dot(a, a), np.dot(b, b) # Fused in SimSIMD
    if a2 == 0 and b2 == 0: result = 0                    # Same in SciPy
    elif ab == 0: result = 1                              # Division by zero error in SciPy
    else: result = 1 - ab / (sqrt(a2) * sqrt(b2))         # Bigger rounding error in SciPy
    return result

In SciPy, however, the cosine distance is computed as 1 - ab / np.sqrt(a2 * b2). It handles the edge case of a zero and non-zero argument pair differently, resulting in a division by zero error. It's not only less efficient, but also less accurate, given how the reciprocal square roots are computed. The C standard library provides the sqrt function, which is generally very accurate, but slow. The rsqrt in-hardware implementations are faster, but have different accuracy characteristics.

  • SSE rsqrtps and AVX vrsqrtps: $1.5 \times 2^{-12}$ maximal relative error.
  • AVX-512 vrsqrt14pd instruction: $2^{-14}$ maximal relative error.
  • NEON frsqrte instruction has no documented error bounds, but can be $2^{-3}$.

To overcome the limitations of the rsqrt instruction, SimSIMD uses the Newton-Raphson iteration to refine the initial estimate for high-precision floating-point numbers. It can be defined as:

x_{n+1} = x_n \cdot (3 - x_n \cdot x_n) / 2

On 1536-dimensional inputs on Intel Sapphire Rapids CPU a single such iteration can result in a 2-3 orders of magnitude relative error reduction:

Datatype NumPy Error SimSIMD w/out Iteration SimSIMD
bfloat16 1.89e-08 ± 1.59e-08 3.07e-07 ± 3.09e-07 3.53e-09 ± 2.70e-09
float16 1.67e-02 ± 1.44e-02 2.68e-05 ± 1.95e-05 2.02e-05 ± 1.39e-05
float32 2.21e-08 ± 1.65e-08 3.47e-07 ± 3.49e-07 3.77e-09 ± 2.84e-09
float64 0.00e+00 ± 0.00e+00 3.80e-07 ± 4.50e-07 1.35e-11 ± 1.85e-11

Curved Spaces, Mahalanobis Distance, and Bilinear Quadratic Forms

The Mahalanobis distance is a generalization of the Euclidean distance, which takes into account the covariance of the data. It's very similar in its form to the bilinear form, which is a generalization of the dot product.

\text{BilinearForm}(a, b, M) = a^T M b
\text{Mahalanobis}(a, b, M) = \sqrt{(a - b)^T M^{-1} (a - b)}

Bilinear Forms can be seen as one of the most important linear algebraic operations, surprisingly missing in BLAS and LAPACK. They are versatile and appear in various domains:

  • In Quantum Mechanics, the expectation value of an observable $A$ in a state $\psi$ is given by $\langle \psi | A | \psi \rangle$, which is a bilinear form.
  • In Machine Learning, in Support Vector Machines (SVMs), bilinear forms define kernel functions that measure similarity between data points.
  • In Differential Geometry, the metric tensor, which defines distances and angles on a manifold, is a bilinear form on the tangent space.
  • In Economics, payoff functions in certain Game Theoretic problems can be modeled as bilinear forms of players' strategies.
  • In Physics, interactions between electric and magnetic fields can be expressed using bilinear forms.

Broad applications aside, the lack of a specialized primitive for bilinear forms in BLAS and LAPACK means significant performance overhead. A $vector * matrix * vector$ product is a scalar, whereas its constituent parts ($vector * matrix$ and $matrix * vector$) are vectors:

  • They need memory to be stored in: $O(n)$ allocation.
  • The data will be written to memory and read back, wasting CPU cycles.

SimSIMD doesn't produce intermediate vector results, like a @ M @ b, but computes the bilinear form directly.

Set Intersection, Galloping, and Binary Search

The set intersection operation is generally defined as the number of elements that are common between two sets, represented as sorted arrays of integers. The most common way to compute it is a linear scan:

size_t intersection_size(int *a, int *b, size_t n, size_t m) {
    size_t i = 0, j = 0, count = 0;
    while (i < n && j < m) {
        if (a[i] < b[j]) i++;
        else if (a[i] > b[j]) j++;
        else i++, j++, count++;
    }
    return count;
}

Alternatively, one can use the binary search to find the elements in the second array that are present in the first one. On every step the checked region of the second array is halved, which is called the galloping search. It's faster, but only when large arrays of very different sizes are intersected. Third approach is to use the SIMD instructions to compare multiple elements at once:

  • Using string-intersection instructions on x86, like pcmpestrm.
  • Using integer-intersection instructions in AVX-512, like vp2intersectd.
  • Using vanilla equality checks present in all SIMD instruction sets.

After benchmarking, the last approach was chosen, as it's the most flexible and often the fastest.

Complex Dot Products, Conjugate Dot Products, and Complex Numbers

Complex dot products are a generalization of the dot product to complex numbers. They are supported by most BLAS packages, but almost never in mixed precision. SimSIMD defines dot and vdot kernels as:

\text{dot}(a, b) = \sum_{i=0}^{n-1} a_i \cdot b_i
\text{vdot}(a, b) = \sum_{i=0}^{n-1} a_i \cdot \bar{b_i}

Where $\bar{b_i}$ is the complex conjugate of $b_i$. Putting that into Python code for scalar arrays:

def dot(a: List[number], b: List[number]) -> number:
    a_real, a_imaginary = a[0::2], a[1::2]
    b_real, b_imaginary = b[0::2], b[1::2]
    ab_real, ab_imaginary = 0, 0
    for ar, ai, br, bi in zip(a_real, a_imaginary, b_real, b_imaginary):
        ab_real += ar * br - ai * bi
        ab_imaginary += ar * bi + ai * br
    return ab_real, ab_imaginary

def vdot(a: List[number], b: List[number]) -> number:
    a_real, a_imaginary = a[0::2], a[1::2]
    b_real, b_imaginary = b[0::2], b[1::2]
    ab_real, ab_imaginary = 0, 0
    for ar, ai, br, bi in zip(a_real, a_imaginary, b_real, b_imaginary):
        ab_real += ar * br + ai * bi
        ab_imaginary += ar * bi - ai * br
    return ab_real, ab_imaginary

Logarithms in Kullback-Leibler & Jensen–Shannon Divergences

The Kullback-Leibler divergence is a measure of how one probability distribution diverges from a second, expected probability distribution. Jensen-Shannon divergence is a symmetrized and smoothed version of the Kullback-Leibler divergence, which can be used as a distance metric between probability distributions.

\text{KL}(P || Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}
\text{JS}(P, Q) = \frac{1}{2} \text{KL}(P || M) + \frac{1}{2} \text{KL}(Q || M), M = \frac{P + Q}{2}

Both functions are defined for non-negative numbers, and the logarithm is a key part of their computation.

Mixed Precision in Fused-Multiply-Add and Weighted Sums

The Fused-Multiply-Add (FMA) operation is a single operation that combines element-wise multiplication and addition with different scaling factors. The Weighted Sum is it's simplified variant without element-wise multiplication.

\text{FMA}_i(A, B, C, \alpha, \beta) = \alpha \cdot A_i \cdot B_i + \beta \cdot C_i
\text{WSum}_i(A, B, \alpha, \beta) = \alpha \cdot A_i + \beta \cdot B_i

In NumPy terms, the implementation may look like:

import numpy as np
def wsum(A: np.ndarray, B: np.ndarray, /, Alpha: float, Beta: float) -> np.ndarray:
    assert A.dtype == B.dtype, "Input types must match and affect the output style"
    return (Alpha * A + Beta * B).astype(A.dtype)
def fma(A: np.ndarray, B: np.ndarray, C: np.ndarray, /, Alpha: float, Beta: float) -> np.ndarray:
    assert A.dtype == B.dtype and A.dtype == C.dtype, "Input types must match and affect the output style"
    return (Alpha * A * B + Beta * C).astype(A.dtype)

The tricky part is implementing those operations in mixed precision, where the scaling factors are of different precision than the input and output vectors. SimSIMD uses double-precision floating-point scaling factors for any input and output precision, including i8 and u8 integers and f16 and bf16 floats. Depending on the generation of the CPU, given native support for f16 addition and multiplication, the f16 temporaries are used for i8 and u8 multiplication, scaling, and addition. For bf16, native support is generally limited to dot-products with subsequent partial accumulation, which is not enough for the FMA and WSum operations, so f32 is used as a temporary.

Auto-Vectorization & Loop Unrolling

On the Intel Sapphire Rapids platform, SimSIMD was benchmarked against auto-vectorized code using GCC 12. GCC handles single-precision float but might not be the best choice for int8 and _Float16 arrays, which have been part of the C language since 2011.

Kind GCC 12 f32 GCC 12 f16 SimSIMD f16 f16 improvement
Inner Product 3,810 K/s 192 K/s 5,990 K/s 31 x
Cosine Distance 3,280 K/s 336 K/s 6,880 K/s 20 x
Euclidean Distance ² 4,620 K/s 147 K/s 5,320 K/s 36 x
Jensen-Shannon Divergence 1,180 K/s 18 K/s 2,140 K/s 118 x

Dynamic Dispatch

Most popular software is precompiled and distributed with fairly conservative CPU optimizations, to ensure compatibility with older hardware. Database Management platforms, like ClickHouse, and Web Browsers, like Google Chrome,need to run on billions of devices, and they can't afford to be picky about the CPU features. For such users SimSIMD provides a dynamic dispatch mechanism, which selects the most advanced micro-kernel for the current CPU at runtime.

Subset F CD ER PF 4FMAPS 4VNNIW VPOPCNTDQ VL DQ BW IFMA VBMI VNNI BF16 VBMI2 BITALG VPCLMULQDQ GFNI VAES VP2INTERSECT FP16
Knights Landing (Xeon Phi x200, 2016) Yes Yes No
Knights Mill (Xeon Phi x205, 2017) Yes No
Skylake-SP, Skylake-X (2017) No No Yes No
Cannon Lake (2018) Yes No
Cascade Lake (2019) No Yes No
Cooper Lake (2020) Yes No
Ice Lake (2019) Yes No Yes No
Tiger Lake (2020) Yes No
Rocket Lake (2021) No
Alder Lake (2021) Partial Partial
Zen 4 (2022) Yes Yes No
Sapphire Rapids (2023) No Yes
Zen 5 (2024) Yes No

You can compile SimSIMD on an old CPU, like Intel Haswell, and run it on a new one, like AMD Genoa, and it will automatically use the most advanced instructions available. Reverse is also true, you can compile on a new CPU and run on an old one, and it will automatically fall back to the most basic instructions. Moreover, the very first time you prove for CPU capabilities with simsimd_capabilities(), it initializes the dynamic dispatch mechanism, and all subsequent calls will be faster and won't face race conditions in multi-threaded environments.

Target Specific Backends

SimSIMD exposes all kernels for all backends, and you can select the most advanced one for the current CPU without relying on built-in dispatch mechanisms. That's handy for testing and benchmarking, but also in case you want to dispatch a very specific kernel for a very specific CPU, bypassing SimSIMD assignment logic. All of the function names follow the same pattern: simsimd_{function}_{type}_{backend}.

  • The backend can be serial, haswell, skylake, ice, genoa, sapphire, turin, neon, or sve.
  • The type can be f64, f32, f16, bf16, f64c, f32c, f16c, bf16c, i8, or b8.
  • The function can be dot, vdot, cos, l2sq, hamming, jaccard, kl, js, or intersect.

To avoid hard-coding the backend, you can use the simsimd_kernel_punned_t to pun the function pointer and the simsimd_capabilities function to get the available backends at runtime. To match all the function names, consider a RegEx:

SIMSIMD_PUBLIC void simsimd_\w+_\w+_\w+\(

On Linux, you can use the following command to list all unique functions:

$ grep -oP 'SIMSIMD_PUBLIC void simsimd_\w+_\w+_\w+\(' include/simsimd/*.h | sort | uniq
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_haswell(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_ice(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_neon(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_serial(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_hamming_b8_sve(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_haswell(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_ice(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_neon(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_serial(
> include/simsimd/binary.h:SIMSIMD_PUBLIC void simsimd_jaccard_b8_sve(

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simsimd-6.0.5.tar.gz (156.2 kB view details)

Uploaded Source

Built Distributions

simsimd-6.0.5-cp313-cp313-win_arm64.whl (55.3 kB view details)

Uploaded CPython 3.13 Windows ARM64

simsimd-6.0.5-cp313-cp313-win_amd64.whl (82.6 kB view details)

Uploaded CPython 3.13 Windows x86-64

simsimd-6.0.5-cp313-cp313-win32.whl (52.6 kB view details)

Uploaded CPython 3.13 Windows x86

simsimd-6.0.5-cp313-cp313-musllinux_1_2_x86_64.whl (641.8 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

simsimd-6.0.5-cp313-cp313-musllinux_1_2_s390x.whl (309.6 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ s390x

simsimd-6.0.5-cp313-cp313-musllinux_1_2_ppc64le.whl (380.6 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ppc64le

simsimd-6.0.5-cp313-cp313-musllinux_1_2_i686.whl (336.0 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

simsimd-6.0.5-cp313-cp313-musllinux_1_2_armv7l.whl (261.8 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARMv7l

simsimd-6.0.5-cp313-cp313-musllinux_1_2_aarch64.whl (449.1 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

simsimd-6.0.5-cp313-cp313-manylinux_2_28_x86_64.whl (605.5 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ x86-64

simsimd-6.0.5-cp313-cp313-manylinux_2_28_aarch64.whl (410.0 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ ARM64

simsimd-6.0.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl (220.2 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ s390x

simsimd-6.0.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (289.7 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ppc64le

simsimd-6.0.5-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (242.7 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

simsimd-6.0.5-cp313-cp313-macosx_11_0_arm64.whl (87.5 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

simsimd-6.0.5-cp313-cp313-macosx_10_13_x86_64.whl (97.3 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

simsimd-6.0.5-cp313-cp313-macosx_10_13_universal2.whl (160.2 kB view details)

Uploaded CPython 3.13 macOS 10.13+ universal2 (ARM64, x86-64)

simsimd-6.0.5-cp312-cp312-win_arm64.whl (55.3 kB view details)

Uploaded CPython 3.12 Windows ARM64

simsimd-6.0.5-cp312-cp312-win_amd64.whl (82.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

simsimd-6.0.5-cp312-cp312-win32.whl (52.6 kB view details)

Uploaded CPython 3.12 Windows x86

simsimd-6.0.5-cp312-cp312-musllinux_1_2_x86_64.whl (641.7 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

simsimd-6.0.5-cp312-cp312-musllinux_1_2_s390x.whl (309.5 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ s390x

simsimd-6.0.5-cp312-cp312-musllinux_1_2_ppc64le.whl (380.5 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ppc64le

simsimd-6.0.5-cp312-cp312-musllinux_1_2_i686.whl (336.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

simsimd-6.0.5-cp312-cp312-musllinux_1_2_armv7l.whl (261.8 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARMv7l

simsimd-6.0.5-cp312-cp312-musllinux_1_2_aarch64.whl (449.1 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

simsimd-6.0.5-cp312-cp312-manylinux_2_28_x86_64.whl (605.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

simsimd-6.0.5-cp312-cp312-manylinux_2_28_aarch64.whl (410.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

simsimd-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (220.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

simsimd-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (289.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

simsimd-6.0.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (242.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

simsimd-6.0.5-cp312-cp312-macosx_11_0_arm64.whl (87.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

simsimd-6.0.5-cp312-cp312-macosx_10_13_x86_64.whl (97.3 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

simsimd-6.0.5-cp312-cp312-macosx_10_13_universal2.whl (160.2 kB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

simsimd-6.0.5-cp311-cp311-win_arm64.whl (55.3 kB view details)

Uploaded CPython 3.11 Windows ARM64

simsimd-6.0.5-cp311-cp311-win_amd64.whl (82.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

simsimd-6.0.5-cp311-cp311-win32.whl (52.5 kB view details)

Uploaded CPython 3.11 Windows x86

simsimd-6.0.5-cp311-cp311-musllinux_1_2_x86_64.whl (641.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

simsimd-6.0.5-cp311-cp311-musllinux_1_2_s390x.whl (309.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ s390x

simsimd-6.0.5-cp311-cp311-musllinux_1_2_ppc64le.whl (380.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ppc64le

simsimd-6.0.5-cp311-cp311-musllinux_1_2_i686.whl (335.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

simsimd-6.0.5-cp311-cp311-musllinux_1_2_armv7l.whl (261.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARMv7l

simsimd-6.0.5-cp311-cp311-musllinux_1_2_aarch64.whl (448.9 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

simsimd-6.0.5-cp311-cp311-manylinux_2_28_x86_64.whl (605.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

simsimd-6.0.5-cp311-cp311-manylinux_2_28_aarch64.whl (409.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

simsimd-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (219.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

simsimd-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (289.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

simsimd-6.0.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (242.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

simsimd-6.0.5-cp311-cp311-macosx_11_0_arm64.whl (87.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

simsimd-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl (98.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

simsimd-6.0.5-cp311-cp311-macosx_10_9_universal2.whl (160.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-6.0.5-cp310-cp310-win_arm64.whl (55.3 kB view details)

Uploaded CPython 3.10 Windows ARM64

simsimd-6.0.5-cp310-cp310-win_amd64.whl (82.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

simsimd-6.0.5-cp310-cp310-win32.whl (52.5 kB view details)

Uploaded CPython 3.10 Windows x86

simsimd-6.0.5-cp310-cp310-musllinux_1_2_x86_64.whl (641.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

simsimd-6.0.5-cp310-cp310-musllinux_1_2_s390x.whl (309.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ s390x

simsimd-6.0.5-cp310-cp310-musllinux_1_2_ppc64le.whl (380.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ppc64le

simsimd-6.0.5-cp310-cp310-musllinux_1_2_i686.whl (335.9 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

simsimd-6.0.5-cp310-cp310-musllinux_1_2_armv7l.whl (261.6 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARMv7l

simsimd-6.0.5-cp310-cp310-musllinux_1_2_aarch64.whl (448.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

simsimd-6.0.5-cp310-cp310-manylinux_2_28_x86_64.whl (605.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

simsimd-6.0.5-cp310-cp310-manylinux_2_28_aarch64.whl (409.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

simsimd-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (219.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

simsimd-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (289.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

simsimd-6.0.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (242.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

simsimd-6.0.5-cp310-cp310-macosx_11_0_arm64.whl (87.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

simsimd-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl (98.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

simsimd-6.0.5-cp310-cp310-macosx_10_9_universal2.whl (160.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-6.0.5-cp39-cp39-win_arm64.whl (55.3 kB view details)

Uploaded CPython 3.9 Windows ARM64

simsimd-6.0.5-cp39-cp39-win_amd64.whl (82.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

simsimd-6.0.5-cp39-cp39-win32.whl (52.5 kB view details)

Uploaded CPython 3.9 Windows x86

simsimd-6.0.5-cp39-cp39-musllinux_1_2_x86_64.whl (641.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

simsimd-6.0.5-cp39-cp39-musllinux_1_2_s390x.whl (308.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ s390x

simsimd-6.0.5-cp39-cp39-musllinux_1_2_ppc64le.whl (380.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ppc64le

simsimd-6.0.5-cp39-cp39-musllinux_1_2_i686.whl (335.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

simsimd-6.0.5-cp39-cp39-musllinux_1_2_armv7l.whl (261.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARMv7l

simsimd-6.0.5-cp39-cp39-musllinux_1_2_aarch64.whl (448.7 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

simsimd-6.0.5-cp39-cp39-manylinux_2_28_x86_64.whl (604.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

simsimd-6.0.5-cp39-cp39-manylinux_2_28_aarch64.whl (409.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

simsimd-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (219.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

simsimd-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (289.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

simsimd-6.0.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (242.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

simsimd-6.0.5-cp39-cp39-macosx_11_0_arm64.whl (87.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

simsimd-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl (98.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

simsimd-6.0.5-cp39-cp39-macosx_10_9_universal2.whl (160.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-6.0.5-cp38-cp38-win_amd64.whl (82.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

simsimd-6.0.5-cp38-cp38-win32.whl (52.5 kB view details)

Uploaded CPython 3.8 Windows x86

simsimd-6.0.5-cp38-cp38-musllinux_1_2_x86_64.whl (641.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

simsimd-6.0.5-cp38-cp38-musllinux_1_2_s390x.whl (309.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ s390x

simsimd-6.0.5-cp38-cp38-musllinux_1_2_ppc64le.whl (380.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ppc64le

simsimd-6.0.5-cp38-cp38-musllinux_1_2_i686.whl (335.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

simsimd-6.0.5-cp38-cp38-musllinux_1_2_armv7l.whl (261.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARMv7l

simsimd-6.0.5-cp38-cp38-musllinux_1_2_aarch64.whl (448.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

simsimd-6.0.5-cp38-cp38-manylinux_2_28_x86_64.whl (605.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

simsimd-6.0.5-cp38-cp38-manylinux_2_28_aarch64.whl (410.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

simsimd-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (220.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

simsimd-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (289.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

simsimd-6.0.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (242.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

simsimd-6.0.5-cp38-cp38-macosx_11_0_arm64.whl (87.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

simsimd-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl (98.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

simsimd-6.0.5-cp38-cp38-macosx_10_9_universal2.whl (160.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

simsimd-6.0.5-cp37-cp37m-win_amd64.whl (82.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

simsimd-6.0.5-cp37-cp37m-win32.whl (52.4 kB view details)

Uploaded CPython 3.7m Windows x86

simsimd-6.0.5-cp37-cp37m-musllinux_1_2_x86_64.whl (640.8 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

simsimd-6.0.5-cp37-cp37m-musllinux_1_2_s390x.whl (308.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ s390x

simsimd-6.0.5-cp37-cp37m-musllinux_1_2_ppc64le.whl (379.7 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ppc64le

simsimd-6.0.5-cp37-cp37m-musllinux_1_2_i686.whl (335.4 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

simsimd-6.0.5-cp37-cp37m-musllinux_1_2_armv7l.whl (261.0 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARMv7l

simsimd-6.0.5-cp37-cp37m-musllinux_1_2_aarch64.whl (448.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

simsimd-6.0.5-cp37-cp37m-manylinux_2_28_x86_64.whl (605.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ x86-64

simsimd-6.0.5-cp37-cp37m-manylinux_2_28_aarch64.whl (409.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.28+ ARM64

simsimd-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (219.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

simsimd-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (289.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

simsimd-6.0.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (242.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

simsimd-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl (97.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file simsimd-6.0.5.tar.gz.

File metadata

  • Download URL: simsimd-6.0.5.tar.gz
  • Upload date:
  • Size: 156.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5.tar.gz
Algorithm Hash digest
SHA256 3951df7ef31af6257c22b91fbb16b4cd683a13bf48426de2c4d490fb5e8c5088
MD5 d62068efda6d20b16c78f50fc4794477
BLAKE2b-256 bda722e710a16f7c6aa4ca541305decfa1ec1a6a61d3f852c4819c9f334135a9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5.tar.gz:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5.tar.gz
    • Subject digest: 3951df7ef31af6257c22b91fbb16b4cd683a13bf48426de2c4d490fb5e8c5088
    • Transparency log index: 148403947
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-win_arm64.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp313-cp313-win_arm64.whl
  • Upload date:
  • Size: 55.3 kB
  • Tags: CPython 3.13, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-win_arm64.whl
Algorithm Hash digest
SHA256 e131b3f51fa858bfb462a0ad2d497874a63be63bcfa4b1b9519134f905c87218
MD5 a9f81b1e9b7ad35331a869afb639d5e4
BLAKE2b-256 04d38c263cb364883d744457ae97a56142bbcdf6bbbd803ea25af8b8f8c26906

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-win_arm64.whl
    • Subject digest: e131b3f51fa858bfb462a0ad2d497874a63be63bcfa4b1b9519134f905c87218
    • Transparency log index: 148403989
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 82.6 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 d068c58742d5504bfeaa67bdcb4f7b8c44f3688f0e575bfd7a0ebba088000194
MD5 ddfa90c4b1089c38ed79fb053e76e335
BLAKE2b-256 89e74490332bc3ee0f2ede5376dac2de471406b80c15e89ac544892825535fbe

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-win_amd64.whl
    • Subject digest: d068c58742d5504bfeaa67bdcb4f7b8c44f3688f0e575bfd7a0ebba088000194
    • Transparency log index: 148404016
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-win32.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp313-cp313-win32.whl
  • Upload date:
  • Size: 52.6 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 15fdc7ec7609f863df054f93b54305be5fe549fa1ba7aecdddba5db4892b54e7
MD5 735cc675160e29c17ba19bead491c778
BLAKE2b-256 206acc2e321e3b1265870c260bf377c6916b31f172fb6f9d11a122f98b73f9b4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-win32.whl
    • Subject digest: 15fdc7ec7609f863df054f93b54305be5fe549fa1ba7aecdddba5db4892b54e7
    • Transparency log index: 148404009
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0ae543d1f38b092d73d63372885757d8816b5108f875117bca5dd8ee57394d7b
MD5 3304d736422b48caf99d619f87e18ec7
BLAKE2b-256 5964aa92de2abe5aad4bb923310bfdb44f90778ad59038154d3f992d0e5582ff

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-musllinux_1_2_x86_64.whl
    • Subject digest: 0ae543d1f38b092d73d63372885757d8816b5108f875117bca5dd8ee57394d7b
    • Transparency log index: 148404019
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 f2aa032ff48d7993b41df0d0886717bd07a4196e11c228a2062988781933ca56
MD5 30355c724bb2b362813db137016afdc1
BLAKE2b-256 edeebe355fbb689f7177d2a553de982e7108d0fcfc7cbc7d465efa88a5ff4e3a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-musllinux_1_2_s390x.whl
    • Subject digest: f2aa032ff48d7993b41df0d0886717bd07a4196e11c228a2062988781933ca56
    • Transparency log index: 148404057
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 a72d72114741911adbf191dba4f81e87d63f51e6ff73abc1367921c469f00ca1
MD5 2460dff1b02a6d5d27063e54f85765fc
BLAKE2b-256 7fd380e446f535588c8db88a157c5b6185f0af799fb20994f3d436d90471876f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-musllinux_1_2_ppc64le.whl
    • Subject digest: a72d72114741911adbf191dba4f81e87d63f51e6ff73abc1367921c469f00ca1
    • Transparency log index: 148404119
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c38080d3d4e2c4f85d79e635a9a3e0a98230da1bb06e658f8e111c8589f7e401
MD5 c733da27e7bd3ad38b202e2b32b19106
BLAKE2b-256 68753d5629f2870212774cf92ffc3771674ad1f4e218c6d19ac98bc59d129772

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-musllinux_1_2_i686.whl
    • Subject digest: c38080d3d4e2c4f85d79e635a9a3e0a98230da1bb06e658f8e111c8589f7e401
    • Transparency log index: 148403986
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 40d66a4a10fa3865d0d9bb5befecaee842a1f36ae8430661b00c1535b9760caa
MD5 aecaf9d4e84335c2e0644addd281a7e5
BLAKE2b-256 0044545e2d0c3a242ad598b4afa853412e55529daebf2edc69f871de437c1859

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-musllinux_1_2_armv7l.whl
    • Subject digest: 40d66a4a10fa3865d0d9bb5befecaee842a1f36ae8430661b00c1535b9760caa
    • Transparency log index: 148403981
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 900bf8c6f55386f172402bd0075145a91f09c4eac6707be10411e85e7f96517e
MD5 a541b21121c36a0ac9f33f6108ae7e03
BLAKE2b-256 ce48449da5cbda613b70feb24822122ce61cad95853ec6cca00bd182f405626d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-musllinux_1_2_aarch64.whl
    • Subject digest: 900bf8c6f55386f172402bd0075145a91f09c4eac6707be10411e85e7f96517e
    • Transparency log index: 148404109
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 44873124c0bd8b67f362680cd527e68fe080f7ee88c8e15e7100029b8a07f742
MD5 c305ea8f793a2fb3aacae0dc3be6b4ab
BLAKE2b-256 3b66f3f4052c2879999e769b5562abf5397534d7e4f44e31f5ed9edbc39e432f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-manylinux_2_28_x86_64.whl
    • Subject digest: 44873124c0bd8b67f362680cd527e68fe080f7ee88c8e15e7100029b8a07f742
    • Transparency log index: 148404024
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ab495e1a03164ad1141b8f7fd29b1a67c88bd9889aaf617c4555d7eea83acd7b
MD5 5867311e704d8fa33d5856b5138ea394
BLAKE2b-256 05308510da1cdb3e06c076065cc1b4eeeb515da3e6d2fe1aa0013e3b58281d5e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-manylinux_2_28_aarch64.whl
    • Subject digest: ab495e1a03164ad1141b8f7fd29b1a67c88bd9889aaf617c4555d7eea83acd7b
    • Transparency log index: 148404114
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7bb9b91024a855320b355b0e7343aa34ed47cbe91e8242c77f740f7bce529768
MD5 ac5eedcd1cc45824cfdfe25162c7d3b1
BLAKE2b-256 a6ed2a119e72b872b1c5ece206a79b383e0283aabc6080496c52255b1b584274

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 7bb9b91024a855320b355b0e7343aa34ed47cbe91e8242c77f740f7bce529768
    • Transparency log index: 148404059
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d68f1c6778362ed2faaff101cb51b469c1afb414c093e75227d871b7b616daf9
MD5 1c9a86ebfdfd4867ca0fc210df3cbca9
BLAKE2b-256 a0c15ea9bbb76b9c073c9a731be0e24fecd6b87896d354deba90c41ad051a2b5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: d68f1c6778362ed2faaff101cb51b469c1afb414c093e75227d871b7b616daf9
    • Transparency log index: 148404008
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1a638b059fb611e7c1ac0ac55c1a9768df935850fc3f24deb6823fd0e2d0bebf
MD5 2584586c5dca74dddadebcd05d5a1922
BLAKE2b-256 f4a4d0cda487c08c98e4cacf8255bb3ecba2807b194792af3477962a03e8a390

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 1a638b059fb611e7c1ac0ac55c1a9768df935850fc3f24deb6823fd0e2d0bebf
    • Transparency log index: 148404116
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 73fc7b123cd098ab0aa9f5a7192b6eabec38fde6199c03a24065a801ef7fcc82
MD5 cd424fd4036b4595539952489f240de1
BLAKE2b-256 8e69adcd52646d70bd1210e46173259c7bacd824c18466343d824693c19fe091

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-macosx_11_0_arm64.whl
    • Subject digest: 73fc7b123cd098ab0aa9f5a7192b6eabec38fde6199c03a24065a801ef7fcc82
    • Transparency log index: 148403997
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9d41eb39e827b24c2729e368a48cc69c6fc83c78a9c64d4cbe36bfb6056db7f8
MD5 79c2fcae2511e1e1e1cbffad06ccd104
BLAKE2b-256 175734b72a1b40fd77cc5d0d0a8c08a16d7517d70ca0b4c65bfa6b01d6454700

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-macosx_10_13_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-macosx_10_13_x86_64.whl
    • Subject digest: 9d41eb39e827b24c2729e368a48cc69c6fc83c78a9c64d4cbe36bfb6056db7f8
    • Transparency log index: 148404052
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 87212670927256032ad4534ed113f57b360bf6f2f80b80aaa286147135e8ebbb
MD5 3eda99334d77890c6ac9a190c5ac180a
BLAKE2b-256 368c39449373b86f516315bf41192626c3c3dfb154a95bbc889a3dd3546a6f63

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp313-cp313-macosx_10_13_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp313-cp313-macosx_10_13_universal2.whl
    • Subject digest: 87212670927256032ad4534ed113f57b360bf6f2f80b80aaa286147135e8ebbb
    • Transparency log index: 148404102
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-win_arm64.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp312-cp312-win_arm64.whl
  • Upload date:
  • Size: 55.3 kB
  • Tags: CPython 3.12, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-win_arm64.whl
Algorithm Hash digest
SHA256 1a6579aa88177bc3f29b39636fd296c1eddbc0e6113dae60fd0d37b9d8bfe3a6
MD5 5292a481c59884342212cdb125d3e9e7
BLAKE2b-256 cde87dedd6951123be902624445ab48d56f2e49ecab465b78bcc31a3bbe69acd

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-win_arm64.whl
    • Subject digest: 1a6579aa88177bc3f29b39636fd296c1eddbc0e6113dae60fd0d37b9d8bfe3a6
    • Transparency log index: 148404104
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 82.6 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 33408710a43410897ddee52b4b6d101361d60bc935593cec964e4f50251050c7
MD5 df5bfed899f8b473fd15bff47339dc3d
BLAKE2b-256 c82f026d7fc11cf03d0ad25c235acc47f984143e30c31310399b1588b00c2f48

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-win_amd64.whl
    • Subject digest: 33408710a43410897ddee52b4b6d101361d60bc935593cec964e4f50251050c7
    • Transparency log index: 148403949
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-win32.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp312-cp312-win32.whl
  • Upload date:
  • Size: 52.6 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 93d006e9523665c50999b9373d1d3f43eb5417b045a2a10f0e71fd9e9798b83c
MD5 3bf9e0789704c1667ccbcda28509d8c2
BLAKE2b-256 78a10e68738db287431b6ea2461f356911a16145ee082c4b7b9f609fb2d022d7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-win32.whl
    • Subject digest: 93d006e9523665c50999b9373d1d3f43eb5417b045a2a10f0e71fd9e9798b83c
    • Transparency log index: 148404020
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c5cb6bdc8bc446481bcee5db3fa77aaae34d6834d70378bad6fe097635136ee0
MD5 b019dfda9ce85f23e185a76fc52a8e95
BLAKE2b-256 9f301dcd27a70780d8b2dbd87f7e1205e1c91f4d25a6df2fe08b9a805039a67c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-musllinux_1_2_x86_64.whl
    • Subject digest: c5cb6bdc8bc446481bcee5db3fa77aaae34d6834d70378bad6fe097635136ee0
    • Transparency log index: 148404060
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 f8e597e137c9ecfa943abe7ec16b622151a7cd074afb158126908c49482c510a
MD5 c0ec52a5686f6db9156af5d01994d7b4
BLAKE2b-256 4e6b16ac0214eec22c3a354298f8d663b61b0bb12998edd6fb73a5a805e3f1f6

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-musllinux_1_2_s390x.whl
    • Subject digest: f8e597e137c9ecfa943abe7ec16b622151a7cd074afb158126908c49482c510a
    • Transparency log index: 148404041
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 adc081cabd70edcf8bd6ab555411d040446a4b3e427ea22331ea5620e7c13f4a
MD5 312ba5757158f0e45a61c5248197b2b7
BLAKE2b-256 0121e7db87ba8d7680737051c9e5502ecb88fbda7d4f8679d67cb5c3657eeaec

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-musllinux_1_2_ppc64le.whl
    • Subject digest: adc081cabd70edcf8bd6ab555411d040446a4b3e427ea22331ea5620e7c13f4a
    • Transparency log index: 148404156
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7554f487f731063bf4b1b79a123ee8fd6b2a073f3c74f6099529f3f36750f4f8
MD5 0e13c843a6e997b7b06ccd82a8aaa9f8
BLAKE2b-256 f2490ff2a2e87857bccf7a37bafa6778f75c800f2575a0c0762f11b6f095b085

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-musllinux_1_2_i686.whl
    • Subject digest: 7554f487f731063bf4b1b79a123ee8fd6b2a073f3c74f6099529f3f36750f4f8
    • Transparency log index: 148404120
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 925c47451faf59e84f5321d0ddefabea8b72d7489bb67ffb45605afa5855a7ce
MD5 5c924f4ebbaf3e9f2f11be5fa580257c
BLAKE2b-256 33e17c7b7ad4e84b0d0a25064f2f754ce6b1ef80db4cb2a354436fcd9bb7a872

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-musllinux_1_2_armv7l.whl
    • Subject digest: 925c47451faf59e84f5321d0ddefabea8b72d7489bb67ffb45605afa5855a7ce
    • Transparency log index: 148404048
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 37be47390d0e172ea33dc9dab280149a393a34af0928fe708dc866705bb49df3
MD5 2e6084f75d721a5639d850959a967a88
BLAKE2b-256 3b2ae9a6720a1acff1d6b1021107129b459a4d4bd085488c4e3273f21aa8a16f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-musllinux_1_2_aarch64.whl
    • Subject digest: 37be47390d0e172ea33dc9dab280149a393a34af0928fe708dc866705bb49df3
    • Transparency log index: 148404045
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 86f24448520bf1a60292b289b170575ccd33e201a8c623a008cdc4d6fc5cb293
MD5 91fc1c2aae1f756036d2320bc76fc801
BLAKE2b-256 627405daa80b4418021286bd8f72c2539884ca5511f280bbaa02829584ebddc9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-manylinux_2_28_x86_64.whl
    • Subject digest: 86f24448520bf1a60292b289b170575ccd33e201a8c623a008cdc4d6fc5cb293
    • Transparency log index: 148404005
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4412d4b3f5b56dd76f855ba592a374afc6f8c0245deca4e76689746df2057527
MD5 e8d613232be14563c41388e484618e70
BLAKE2b-256 14753b3bc40922d53d07c534c625ebb5d65f555cd3383567201fce610f7ffd52

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-manylinux_2_28_aarch64.whl
    • Subject digest: 4412d4b3f5b56dd76f855ba592a374afc6f8c0245deca4e76689746df2057527
    • Transparency log index: 148404026
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4bba18e3ef420e11641aa60f3ebae6ba0785bb4796cb5919cee73699687d6471
MD5 3f706e6cb1bac0b3264c5e35b1e1b819
BLAKE2b-256 31e552c0032be281c83fc8ad1e9c5c861d68fd129a77a7d2cfc0b21112c67b62

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 4bba18e3ef420e11641aa60f3ebae6ba0785bb4796cb5919cee73699687d6471
    • Transparency log index: 148404082
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 a915d87afb256036551cdcde45fbc58e780ddace99d5913b0f33b0ddb1147f93
MD5 3d82c9dc5ca3521a36f7b6b8fd204d9c
BLAKE2b-256 5908a1888b6f8492bd471591fdd07c7c44e18c74f8c78407e1f5338e2ce9423b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: a915d87afb256036551cdcde45fbc58e780ddace99d5913b0f33b0ddb1147f93
    • Transparency log index: 148404150
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d6e75febe1f8be7cdaecc5dfe6cf4eb11547fc0f11ce6daf1ff2c606a584a987
MD5 97fb2bcb405af043d9129df5108e35a1
BLAKE2b-256 b4d8d7c6d5f6ef750c25e81e8f3b9c097e5638d71cc1923d2e96e7e1067ef6c6

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: d6e75febe1f8be7cdaecc5dfe6cf4eb11547fc0f11ce6daf1ff2c606a584a987
    • Transparency log index: 148404046
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8cf1a1f1f47524d22af4a1bdb88fd96d0b2181cdba03414bfdc6c5890161a56e
MD5 cba98069690ac9d3c385058379765765
BLAKE2b-256 c1362bb2dbfe6d683c868e067f66bafc7d667236abf544712b8571616707f4fd

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-macosx_11_0_arm64.whl
    • Subject digest: 8cf1a1f1f47524d22af4a1bdb88fd96d0b2181cdba03414bfdc6c5890161a56e
    • Transparency log index: 148404147
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4ca6b49a205de20fa983df1160903ca854ba50489d2bf5348f2c86de91a8823a
MD5 5af73c3d4c92c4f28a2cb47cb9dfde5b
BLAKE2b-256 920b6926aef78ed7a87cc9006469e44ce1dbd1b5b4554bf1c2529690e533e899

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-macosx_10_13_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-macosx_10_13_x86_64.whl
    • Subject digest: 4ca6b49a205de20fa983df1160903ca854ba50489d2bf5348f2c86de91a8823a
    • Transparency log index: 148403957
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 b1681e0db03b6e34540efaafbb31241cf17c75a33ea0b58a295e59f23f94c0b6
MD5 a1390a54d90bbf8768d464201f342274
BLAKE2b-256 1ba5d15b0b3f79b74031454e2203dc071fa373c1e9ac2f29b566fbc0c64dd9b7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp312-cp312-macosx_10_13_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp312-cp312-macosx_10_13_universal2.whl
    • Subject digest: b1681e0db03b6e34540efaafbb31241cf17c75a33ea0b58a295e59f23f94c0b6
    • Transparency log index: 148404014
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-win_arm64.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp311-cp311-win_arm64.whl
  • Upload date:
  • Size: 55.3 kB
  • Tags: CPython 3.11, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-win_arm64.whl
Algorithm Hash digest
SHA256 324267f9e3a1c5e2b40e387424b6d033d2b20bbd19b82e0930f53ecb518dde89
MD5 6b5271ee656fad38694bd4a2e031747e
BLAKE2b-256 e710e6abba3dea14dc8d6841809d600f928f4931428518c19b0a9324d4f9325b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-win_arm64.whl
    • Subject digest: 324267f9e3a1c5e2b40e387424b6d033d2b20bbd19b82e0930f53ecb518dde89
    • Transparency log index: 148403983
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 91589ed0279986a4dd3964cc3b42fff1591ce7f96e745293870f44a45b6cfaca
MD5 3f22863dd4c3926f6bcda8756915995f
BLAKE2b-256 84919cf964381d055c464bb8232c04db38d74fc71bb51923211cf3978c9712f8

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-win_amd64.whl
    • Subject digest: 91589ed0279986a4dd3964cc3b42fff1591ce7f96e745293870f44a45b6cfaca
    • Transparency log index: 148403970
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-win32.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp311-cp311-win32.whl
  • Upload date:
  • Size: 52.5 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 9fca350fc4667037a9d50fc382b10bac788be7df62aedec3473697f25b10a911
MD5 2b0d6d2a60544a54206e8117ba1a8112
BLAKE2b-256 19dae6d050af59014652eed3a7b8e30f62bd42312720a71d078b38fcd6396856

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-win32.whl
    • Subject digest: 9fca350fc4667037a9d50fc382b10bac788be7df62aedec3473697f25b10a911
    • Transparency log index: 148404101
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5f37dc913d8eea667ec182fcfdad2beef10cde36ace0affb4eda8a1f03c828b4
MD5 ff39fbd2197769dc444fc5c1d90f56e7
BLAKE2b-256 f79b856898d68584b2d553957df200559349bf249e5f5d5b1d45045e6e09f646

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-musllinux_1_2_x86_64.whl
    • Subject digest: 5f37dc913d8eea667ec182fcfdad2beef10cde36ace0affb4eda8a1f03c828b4
    • Transparency log index: 148404070
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 0998db0d57c05a6e7cceebe720c15ca3a4f870a3b1c93644801fadd0addc9069
MD5 319603b302af8d5523b390abf9846b3a
BLAKE2b-256 0bfb413a89453c6aab173d7eb1b33c1146744c187bcc841ef513956e4f9902bc

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-musllinux_1_2_s390x.whl
    • Subject digest: 0998db0d57c05a6e7cceebe720c15ca3a4f870a3b1c93644801fadd0addc9069
    • Transparency log index: 148404027
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 e5a300e464de23fac083822c44c6485ab843f9fcdf3caace10f2018c17bc24de
MD5 20e1bd14554fd904635c7be916f6f4ae
BLAKE2b-256 11909c0db3be3fafcd8dfbad7fd91f305c6fe7d03fa674eef34abd85da75e169

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-musllinux_1_2_ppc64le.whl
    • Subject digest: e5a300e464de23fac083822c44c6485ab843f9fcdf3caace10f2018c17bc24de
    • Transparency log index: 148404065
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a41247d91f83e298cdcb3288b9ffa0ef5759d9617703de6d37806c6f3c7c524e
MD5 a74734b50dace6c25d52bb74f1279958
BLAKE2b-256 330f60bed4a1ce28604d55147710c85b8440daaec39d02f1f40f038c142a3702

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-musllinux_1_2_i686.whl
    • Subject digest: a41247d91f83e298cdcb3288b9ffa0ef5759d9617703de6d37806c6f3c7c524e
    • Transparency log index: 148404130
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 54f62c73ca5d720a4654ea5d6c9d5011ef53e324b924d03e9f698a03070c11ce
MD5 8d9f82f4bcddae58630d921ce8d879a3
BLAKE2b-256 ab0fd898ee7140e40fa23a37e3ce2594e00408faa5cf47f4a329d5f1b8c242a4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-musllinux_1_2_armv7l.whl
    • Subject digest: 54f62c73ca5d720a4654ea5d6c9d5011ef53e324b924d03e9f698a03070c11ce
    • Transparency log index: 148404033
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 131aedc11f33470f122565c807bf53933a1821febcb2296a04344a33d292ea69
MD5 a8b83d65b2bab7e1b2445f9020c865ad
BLAKE2b-256 115e05891cf6e5f4cdcd43dddb047c4a5b01b1c81b4ecb0177f1ccc3abd0aa36

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-musllinux_1_2_aarch64.whl
    • Subject digest: 131aedc11f33470f122565c807bf53933a1821febcb2296a04344a33d292ea69
    • Transparency log index: 148404131
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3619924158a3002cdce1c4a4a8ae44c828a1bb87b032c57419a320744e4c1e62
MD5 c95e6f9024286919d80dd716f2b6de6c
BLAKE2b-256 1d35b2cb473e465ab2ff488243d6b33c4ce8a89cb3556013fd229098800ae369

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-manylinux_2_28_x86_64.whl
    • Subject digest: 3619924158a3002cdce1c4a4a8ae44c828a1bb87b032c57419a320744e4c1e62
    • Transparency log index: 148403965
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 652e2f993310d1c7a052178ab5f56874a10285eb273c269b19ac661ae6f19f48
MD5 dbc090ffae04ef56c608362edea8a91a
BLAKE2b-256 ececd25d95423a5138ec466a07f69b98afa3ed3ae8bc17b797751d8db9c7a419

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-manylinux_2_28_aarch64.whl
    • Subject digest: 652e2f993310d1c7a052178ab5f56874a10285eb273c269b19ac661ae6f19f48
    • Transparency log index: 148404073
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9b3d41e402b84b5e0713b9a83262286ac3b99bda4ede70fa1d0c10693f76e483
MD5 401314da85725f6beb38d87eac84c11f
BLAKE2b-256 895cc1bccb243750d6cc61c7c90ec748b3062e0b0acc7fde28e1e7444962ae06

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 9b3d41e402b84b5e0713b9a83262286ac3b99bda4ede70fa1d0c10693f76e483
    • Transparency log index: 148404021
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 154bcd62d2878c688188215f058e6374895bc3d3078a92c006df2f1590164e8a
MD5 ff569f11d5d5a50b0543bb3362751448
BLAKE2b-256 0bae64e6688701e5059efe32a24739f5502e0a40508911193b5a3760426c6701

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 154bcd62d2878c688188215f058e6374895bc3d3078a92c006df2f1590164e8a
    • Transparency log index: 148404040
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b473183e36b02e2889cf367ef23bdcbb19085703818fca656b90dc7a4cd74929
MD5 7ab44d459d0b4366b140d67c082745a2
BLAKE2b-256 51d93a36b505ea7c2d55ffa11e747a7d2ce17e4231278c10fd05f493ae6d606c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: b473183e36b02e2889cf367ef23bdcbb19085703818fca656b90dc7a4cd74929
    • Transparency log index: 148404072
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1434c215c70a0e7effa0fe79cae11b706794eb7e47c3f095b5e5cb1bd9ac2517
MD5 a0b64cdd83b7aa3b36dd0fa6395c7de3
BLAKE2b-256 dd8ba800ced7209ee0be9beb8c8968f257e86f4f5cc0081b906a16a1f87a4f54

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-macosx_11_0_arm64.whl
    • Subject digest: 1434c215c70a0e7effa0fe79cae11b706794eb7e47c3f095b5e5cb1bd9ac2517
    • Transparency log index: 148403955
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eebec66ffe4085d14fdb48ac4cf47fa3a06ab1b3d4f25a316b7fb6f9e4468f9c
MD5 3f872926972cffa89073af413a47b7c7
BLAKE2b-256 937848d90c91aab655f551bc3c1945dc4e8e315b3c4b864e42ca2d824d42251c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-macosx_10_9_x86_64.whl
    • Subject digest: eebec66ffe4085d14fdb48ac4cf47fa3a06ab1b3d4f25a316b7fb6f9e4468f9c
    • Transparency log index: 148403968
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 33f9785d094fc9478c0c1f33fbb33d4f906fc85a73ab96397a792844817494b8
MD5 152d25115b43398bdec523e633515ff1
BLAKE2b-256 d2fc1617b96b0023bdb129db4527af62b9ece0adfeac94c0b503e07b45a5b11a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp311-cp311-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp311-cp311-macosx_10_9_universal2.whl
    • Subject digest: 33f9785d094fc9478c0c1f33fbb33d4f906fc85a73ab96397a792844817494b8
    • Transparency log index: 148404122
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 55.3 kB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 7fafda6a025f4ed81f4668d0fd695bbf0de51168a97ac310e1b7b8bcba6b2c29
MD5 5ef56ca5bc60f965336ba2031a4fa1ee
BLAKE2b-256 d75d4348b9d0ad06a71df2d15f8abed0a01d61f6e0b890b2b62e638eebd799f4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-win_arm64.whl
    • Subject digest: 7fafda6a025f4ed81f4668d0fd695bbf0de51168a97ac310e1b7b8bcba6b2c29
    • Transparency log index: 148404090
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ca65754f4377277f78b1f03b00e195fbbb07eab5fbd05148e474ada869b85c8d
MD5 b334d2d063cc3694d2591634da8051de
BLAKE2b-256 aca9aa72c0f1cffddbc86e9759bfc5b0fa5ac265f30f96d11cad5ff9a2bb99ae

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-win_amd64.whl
    • Subject digest: ca65754f4377277f78b1f03b00e195fbbb07eab5fbd05148e474ada869b85c8d
    • Transparency log index: 148404050
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-win32.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp310-cp310-win32.whl
  • Upload date:
  • Size: 52.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b12a55b62229d350675c14010fe8093c3f1b63e17148648bb13538f08a636370
MD5 fe63b8124c4cdf6e1f2d85f2df626fe0
BLAKE2b-256 e2756c2720ed33f25280d72a364f780c49c9243d6db8e4f280405712b4cf531a

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-win32.whl
    • Subject digest: b12a55b62229d350675c14010fe8093c3f1b63e17148648bb13538f08a636370
    • Transparency log index: 148404106
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d9c08bcb71209bbca2336d91a2c44b0dd36d5915e4eef226ed7502897bd26efd
MD5 f35a12ff36e6b7be7fcb8b4850a1bfad
BLAKE2b-256 568f22525ae959e8e0bfbff9b2815c8fa649fd62f0625b542e4abc5838282bdc

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-musllinux_1_2_x86_64.whl
    • Subject digest: d9c08bcb71209bbca2336d91a2c44b0dd36d5915e4eef226ed7502897bd26efd
    • Transparency log index: 148403962
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 06fb743c770285ca4019c80590b8cd33b9cd3ba662f99bfacf00509b81584a14
MD5 09424de8fcba18b03028f0214e99232d
BLAKE2b-256 4105e878b931d36377cf55289ed141fab8e7cb180f411813ca06f3e4c3b64c35

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-musllinux_1_2_s390x.whl
    • Subject digest: 06fb743c770285ca4019c80590b8cd33b9cd3ba662f99bfacf00509b81584a14
    • Transparency log index: 148403995
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 0f69767bd1342ff1bb067a6366f223f63e00488699cb649ca06590196ada6f7f
MD5 68e121e73c3536a1ebe1fb0221c0a071
BLAKE2b-256 1169c8e339b530b815d887091d881294720268ad3a7cb5edea8897c0c68d82b6

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-musllinux_1_2_ppc64le.whl
    • Subject digest: 0f69767bd1342ff1bb067a6366f223f63e00488699cb649ca06590196ada6f7f
    • Transparency log index: 148403956
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 6cbfa0b2694db8273ab88c90e224d4340be4da5fc8661778ad52afe592ccd7a3
MD5 760f2687fc0fda742d261603d7baa5a1
BLAKE2b-256 dabae2b0432f3c6343e6c427f1e7fdbd0bdc298e150a38cda50651a4d6d921f5

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-musllinux_1_2_i686.whl
    • Subject digest: 6cbfa0b2694db8273ab88c90e224d4340be4da5fc8661778ad52afe592ccd7a3
    • Transparency log index: 148404004
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 11f4a0c1b3a4689011096d906783f697aee6a72d0665e2261b38b204534c2cf9
MD5 cb5c002b275c08cde5e4edbf4b381bef
BLAKE2b-256 2dd965dae6ce042253d6d4bcfa9709bec28669e2f36fcbccd679c191668ebd30

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-musllinux_1_2_armv7l.whl
    • Subject digest: 11f4a0c1b3a4689011096d906783f697aee6a72d0665e2261b38b204534c2cf9
    • Transparency log index: 148403991
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ecec3b1aa3e2d77aee092d6438b1ba04807cb1e4066852d227db13f93fb95afe
MD5 5713e92912a4ad157593671013400593
BLAKE2b-256 9cafd8da43c00b81c2d43d71cee502ef79e7448e0d906b352121a85efb879390

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-musllinux_1_2_aarch64.whl
    • Subject digest: ecec3b1aa3e2d77aee092d6438b1ba04807cb1e4066852d227db13f93fb95afe
    • Transparency log index: 148404039
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 70991048164c17c0e222147ea9046de4a8162aa106e7dcbbf049933576643734
MD5 a50c5408a0e20d57b22479cadf2ee876
BLAKE2b-256 b715242df98ad700cf7c19d9e148bd62c201edb012f5e5f14cf0c1b7de61601d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-manylinux_2_28_x86_64.whl
    • Subject digest: 70991048164c17c0e222147ea9046de4a8162aa106e7dcbbf049933576643734
    • Transparency log index: 148404034
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 67db32a5188824198e6260d5af806ea92f97e77e0db173498154c3a13e235934
MD5 52d17e1095d1ca13a66829a23ffa8167
BLAKE2b-256 9762a2a36e38f1d9baa3cd4c997ca38209a785e51d35a237a554aed3753344a3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-manylinux_2_28_aarch64.whl
    • Subject digest: 67db32a5188824198e6260d5af806ea92f97e77e0db173498154c3a13e235934
    • Transparency log index: 148404138
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 53495c7114d2d1f4683c8bbb2b2a5322b902b6f155ca7e1f4294ad8bb548f994
MD5 4c8c4080e4b91e02a9c94502f86c7dbb
BLAKE2b-256 fa2311872cbb3897b426816b33869e4f6ff799a079290a92bda5bba8fa941b6c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 53495c7114d2d1f4683c8bbb2b2a5322b902b6f155ca7e1f4294ad8bb548f994
    • Transparency log index: 148404010
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f8d48936c1c4b260179d7c6803c55e2c9e3dcec1ac06c5c9bd45ee8afd42157d
MD5 1c532fe9eba6720211dceb1ad640c7d3
BLAKE2b-256 98eaa586141c4c01968524fb47da46df5a50595c39975d7c67ec3c923af4a781

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: f8d48936c1c4b260179d7c6803c55e2c9e3dcec1ac06c5c9bd45ee8afd42157d
    • Transparency log index: 148404055
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b4b9388e606b5dd286a2205499ca90ba70e01669fc32da91fbc3895a613e327f
MD5 cbd352e54b483d6b34eaf9cc01e91299
BLAKE2b-256 2cb60ccc349a9d51a4e4f68c6c7d772f2d851f08d54da89dac68045bc2ce891b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: b4b9388e606b5dd286a2205499ca90ba70e01669fc32da91fbc3895a613e327f
    • Transparency log index: 148404128
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f1edd05ddf2561393233b05d4b58706177436130e79596d3037b0fa802344fe6
MD5 d08fd139b4b37eb6de8b55719db58ccb
BLAKE2b-256 58821a3b6eb0aa82553aa80454103df3876c41a662242db4697d6b3452bdac66

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-macosx_11_0_arm64.whl
    • Subject digest: f1edd05ddf2561393233b05d4b58706177436130e79596d3037b0fa802344fe6
    • Transparency log index: 148404097
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c88030432bacb4394a78ba43c57843ed0c2461de2f711bb07022729c7ab3e7e7
MD5 25034e9508a0ff881f488f91d7cec3b5
BLAKE2b-256 06ccc7394ecc54950186e611a1d3b672f6b2b1d0bc468522fd7dc28f8fdacdff

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-macosx_10_9_x86_64.whl
    • Subject digest: c88030432bacb4394a78ba43c57843ed0c2461de2f711bb07022729c7ab3e7e7
    • Transparency log index: 148404032
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 97e8ee6e6b41a172de32978bf8beadd22e9d6e0d1f80c883984bff5bc5fa2ab0
MD5 2086bc3675eff4adbc3408d03d08677c
BLAKE2b-256 fc18c75e214833fed834840c07755d95559d85212f4ab869a5c3c78105f1c5bb

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp310-cp310-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp310-cp310-macosx_10_9_universal2.whl
    • Subject digest: 97e8ee6e6b41a172de32978bf8beadd22e9d6e0d1f80c883984bff5bc5fa2ab0
    • Transparency log index: 148404089
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 55.3 kB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 772b311598621d98cbf681edab6a06662f1284c27fb90ccadbfedd0d5cff1e8a
MD5 4f8e7e726d3d250f082bf540591a20cc
BLAKE2b-256 07348c748a8d8deebaf78c9722c574413f81f1ee36acdc64bd757fc0fbcaee07

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-win_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-win_arm64.whl
    • Subject digest: 772b311598621d98cbf681edab6a06662f1284c27fb90ccadbfedd0d5cff1e8a
    • Transparency log index: 148403976
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7a215934e47731b886bc7d9fe76cbb905280ec7f879948683bd4d5db0ab11690
MD5 32731322e51c42a4935c2f8ecafc9746
BLAKE2b-256 f47b96c59a73ba589849570871765f06653f9f0b9c37e04b94a50b5c31411d63

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-win_amd64.whl
    • Subject digest: 7a215934e47731b886bc7d9fe76cbb905280ec7f879948683bd4d5db0ab11690
    • Transparency log index: 148404086
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 52.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 517d8ebe410934ad8d204cb0d1442868a8af6b0855f5e5eae3d673cd90f42b9f
MD5 2cc009861207c6aa8b940e62db1ae0d5
BLAKE2b-256 22647e86847c4df154da7d1238598d13a337da2d489c0644337860264ec663fd

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-win32.whl
    • Subject digest: 517d8ebe410934ad8d204cb0d1442868a8af6b0855f5e5eae3d673cd90f42b9f
    • Transparency log index: 148404085
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 efae84ce075a80dbc2a6ad6660c11ce7b4551a044cba7b715032b01b84b96eac
MD5 18a1fbcf0179a04473e9a0a1d398020d
BLAKE2b-256 162a42fa9dd9856c208a2baa447f13a962405c32ca613979cf0db985d7f517c3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-musllinux_1_2_x86_64.whl
    • Subject digest: efae84ce075a80dbc2a6ad6660c11ce7b4551a044cba7b715032b01b84b96eac
    • Transparency log index: 148404001
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 4a9d16fd6e5f175e4d9aff41f0139440875a17c2f267672649bb7e73c3de1f2c
MD5 4461125845bb750c7b83173c29a8f162
BLAKE2b-256 b3850e5b61b938b53e9147a5fa8ab2bae81b3ee234d89bdce58542cf79b57394

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-musllinux_1_2_s390x.whl
    • Subject digest: 4a9d16fd6e5f175e4d9aff41f0139440875a17c2f267672649bb7e73c3de1f2c
    • Transparency log index: 148404117
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 ed0855a2a2ea842aa77ff1be05b4c6c825ebd308687df83a0a7d0ecd9cf93d0b
MD5 644e2508a4947c7918b2e69ffe10e9e1
BLAKE2b-256 1108b9461bd2da09f20a13445893128c7431a9810d0d5086e5ac425d552d0fe9

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-musllinux_1_2_ppc64le.whl
    • Subject digest: ed0855a2a2ea842aa77ff1be05b4c6c825ebd308687df83a0a7d0ecd9cf93d0b
    • Transparency log index: 148404142
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 4fbbc09f188c5b988d2249d54511d055c9ef8a17fb7c6e5f04c4db5b5864d396
MD5 82df1e31ac8f841d6a088c891d760b21
BLAKE2b-256 8d6ca796bac1a04db936632f7c0afa0b98673f1c405deb39bf649d2ec3b7bb56

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-musllinux_1_2_i686.whl
    • Subject digest: 4fbbc09f188c5b988d2249d54511d055c9ef8a17fb7c6e5f04c4db5b5864d396
    • Transparency log index: 148404022
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 e422be0f5babe9d6f82bfb3bb88d88bed6fb3113e7fdf37b82cef670a1704d32
MD5 5c04080a1ba3557badf4a2c052b3652d
BLAKE2b-256 bf3ce4242cf54e76e8624c414f240fa796e1a964b0c40b2efee189205c25878e

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-musllinux_1_2_armv7l.whl
    • Subject digest: e422be0f5babe9d6f82bfb3bb88d88bed6fb3113e7fdf37b82cef670a1704d32
    • Transparency log index: 148404153
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 2244186de645c051dfc09cf8d4a6e373fec95aa04757abd1ee852637e35b10b5
MD5 d06bac544c4cee1252a944d8e1b1cdc4
BLAKE2b-256 f4c222ebd9e7ca335ca38503dcd5d779ea739e111c0bc39cbc5efa57fab78f64

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-musllinux_1_2_aarch64.whl
    • Subject digest: 2244186de645c051dfc09cf8d4a6e373fec95aa04757abd1ee852637e35b10b5
    • Transparency log index: 148404007
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 87f307b0c27ea1f35581829d74354bd4ab40faa5fd3bef56842daf7f7d692793
MD5 dc9cf400909cd7ff2ecef4ba6ff67610
BLAKE2b-256 8ec244b65daf872440eeff4da90578652104509d7163a884947e70a6dace43bb

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-manylinux_2_28_x86_64.whl
    • Subject digest: 87f307b0c27ea1f35581829d74354bd4ab40faa5fd3bef56842daf7f7d692793
    • Transparency log index: 148403952
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 96ca2cd1cdf421069824f0f98eccfa268a68aff65a7b49ccc1cc5d5534786063
MD5 256506d6c70342721d36aa6564f9e7b4
BLAKE2b-256 04295a139d3014826c5ee34032f4ff13ac1e8f019d050189390b48d7e5b659e7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-manylinux_2_28_aarch64.whl
    • Subject digest: 96ca2cd1cdf421069824f0f98eccfa268a68aff65a7b49ccc1cc5d5534786063
    • Transparency log index: 148404068
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5332881267b846da4f2647b306c8a44c3b908ee8c40e0af552d726d9cc51f409
MD5 3e8f75b43af75cdd38637f3214892b59
BLAKE2b-256 a470f4b0195a4a3b9b7856d9bcd94f4217468c9a71e0341d9b3ec23179c9b44b

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 5332881267b846da4f2647b306c8a44c3b908ee8c40e0af552d726d9cc51f409
    • Transparency log index: 148404036
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3ce6b1f74f90edacb30805f5c4434aeec4e8bc3987b060485c54e1fea767b7b7
MD5 c51333f033bea72bcae6baa865f68bb3
BLAKE2b-256 910691cb1f91a70bbd70bdbd9c14869d3ebd76306db35750d8cf9cbc4a9ebb53

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 3ce6b1f74f90edacb30805f5c4434aeec4e8bc3987b060485c54e1fea767b7b7
    • Transparency log index: 148404100
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6521cc8967da5bcdbcd6744d3c70404fbafd4818b6d62d7a55547719f02f5e39
MD5 169cb57f63e43ae823a927daedea38f9
BLAKE2b-256 10aed152c9d19480dd2366369c5630aea8134500c5e9ab762278692efe2f5304

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: 6521cc8967da5bcdbcd6744d3c70404fbafd4818b6d62d7a55547719f02f5e39
    • Transparency log index: 148404047
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 75ba79f67ccf33bb76f9511c5e4ee3ea8dca0b84cfbf013b1581b6ca1cada32e
MD5 f780b06359dd79f26597cc93f0c2124c
BLAKE2b-256 3027d1b4b8cd547f1500ed4c781305a59356c5dbfeba264250c701e5d6fbe14d

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-macosx_11_0_arm64.whl
    • Subject digest: 75ba79f67ccf33bb76f9511c5e4ee3ea8dca0b84cfbf013b1581b6ca1cada32e
    • Transparency log index: 148403961
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec6802f3160312622af1564e434e710abb15b49cf630fbbb25f8576780283022
MD5 5fa651aa84c5c7949bc33295a313e556
BLAKE2b-256 225c5ddd89c8dd0ca0d073b70357a2b3855ed27709c204657a1a8e2a742a78c6

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-macosx_10_9_x86_64.whl
    • Subject digest: ec6802f3160312622af1564e434e710abb15b49cf630fbbb25f8576780283022
    • Transparency log index: 148404069
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b6655febe3194ca88460a078cccc514156160a29c1734995fdd01081552f3b15
MD5 0ac28e6ed5f62f2374e6d84e1852a840
BLAKE2b-256 ff5c33941c8481d4852fc741a2fffb86af82ad125f8b1e358177167ad93f4a09

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp39-cp39-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp39-cp39-macosx_10_9_universal2.whl
    • Subject digest: b6655febe3194ca88460a078cccc514156160a29c1734995fdd01081552f3b15
    • Transparency log index: 148403973
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 72d74a5f8d2e2058ead9ee4e27ef1b1213b1f9e2b9d4b7bfadd58ec57432a888
MD5 33b1410038088e21dbcc1e44bb52aa48
BLAKE2b-256 d7fe6f5bc30f8ddaee9fc59821208a3cdd5b42bbfc1944135ed3828bab13e247

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-win_amd64.whl
    • Subject digest: 72d74a5f8d2e2058ead9ee4e27ef1b1213b1f9e2b9d4b7bfadd58ec57432a888
    • Transparency log index: 148404025
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 52.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 08326b2b99627ac7b0304b67b84e6ee3d51d0e2013b793b09f0f0130a1e991df
MD5 7acd6b55c9497ca9e425fb4e0a685cb7
BLAKE2b-256 9c316e59b178077a148433e9c5ef0dafed873cb2a52c3b126de4fd1b3d98fc03

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-win32.whl
    • Subject digest: 08326b2b99627ac7b0304b67b84e6ee3d51d0e2013b793b09f0f0130a1e991df
    • Transparency log index: 148404074
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 160d342c5c5302e7a5897e596344574a6a70ee63c380261c8a8f342d7ffb16cf
MD5 87c15ccd5ecbe7d7a053696086a1ed30
BLAKE2b-256 e032e6f7ada1a3b7a3ca2592c4b76abec91af6c10e74e7bb8aff2f53eb2ae2ea

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-musllinux_1_2_x86_64.whl
    • Subject digest: 160d342c5c5302e7a5897e596344574a6a70ee63c380261c8a8f342d7ffb16cf
    • Transparency log index: 148404095
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 e880d568b5ea42eb2977202b3b77bdfc5932423b925f740e725c8301646d8421
MD5 4f5fe40200716f5a803224e4ab3480f6
BLAKE2b-256 818579812820fa8463433563a2be0b74def3ea8efdc1fcad6a42b334171abf5f

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-musllinux_1_2_s390x.whl
    • Subject digest: e880d568b5ea42eb2977202b3b77bdfc5932423b925f740e725c8301646d8421
    • Transparency log index: 148403967
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 cb70e43618925ab07c3cab17bfc6cb2ec09b3884898eda3d6129053da35a3884
MD5 4f2a40075763fb18d782162fbf5af60e
BLAKE2b-256 32b3fcf73e73142d218b2eac3ff6b29d0368e0ac9a658fa5d54a4336a5ed3fca

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-musllinux_1_2_ppc64le.whl
    • Subject digest: cb70e43618925ab07c3cab17bfc6cb2ec09b3884898eda3d6129053da35a3884
    • Transparency log index: 148404067
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0bf3a4bd944de3cfc33916c038d639c34e12756b62d00620cf8d35d1d6c9948e
MD5 5084e3faa7f768c44e9a71d68a720918
BLAKE2b-256 b6658b78515afece73746f0e5694c9ffaf8b6d154ee4d8cfafecb3d0a027e4a3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-musllinux_1_2_i686.whl
    • Subject digest: 0bf3a4bd944de3cfc33916c038d639c34e12756b62d00620cf8d35d1d6c9948e
    • Transparency log index: 148404012
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 b8cafa194bc864c78045999d9a952b08000f6e1da87868b9ae269ec945132af2
MD5 72b4568776e31e5fd41eb1d56cc45d87
BLAKE2b-256 d7eecf2c49e4496020ecae3510c21d43b519dc567ec8962042c0209bd631aca2

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-musllinux_1_2_armv7l.whl
    • Subject digest: b8cafa194bc864c78045999d9a952b08000f6e1da87868b9ae269ec945132af2
    • Transparency log index: 148404017
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f4f22e3880daf1baf05cfb9193bd7b72150ff8c87394daf5f09a8385ee20bdb3
MD5 4e7867e66480a4cd3fe74d17965082df
BLAKE2b-256 629eafb8af410129beb04c798e0c14d1822822e1fcccf96ad2aaaad69bdaa59c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-musllinux_1_2_aarch64.whl
    • Subject digest: f4f22e3880daf1baf05cfb9193bd7b72150ff8c87394daf5f09a8385ee20bdb3
    • Transparency log index: 148404043
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 08f4e5eb024275ab167087242c144123c01ea9248cb041b725107685cec5a5e2
MD5 ede3ce7093eb7bd516ec07ac92c2c140
BLAKE2b-256 e61c28b025379b96b106b6b0e245245dd3ae8bdde2de479d9b140e90daaa73eb

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-manylinux_2_28_x86_64.whl
    • Subject digest: 08f4e5eb024275ab167087242c144123c01ea9248cb041b725107685cec5a5e2
    • Transparency log index: 148404030
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ac24e92c67bd7f6cf5944e661fa899ff826a15f9f5dc5206e027fb022ab7cc2d
MD5 ff30d6420e83c89776399f9d3b57b24e
BLAKE2b-256 49983c2a4c76f219f2323c8a8f2a98243785d2207296839ea32ee5036cdac349

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-manylinux_2_28_aarch64.whl
    • Subject digest: ac24e92c67bd7f6cf5944e661fa899ff826a15f9f5dc5206e027fb022ab7cc2d
    • Transparency log index: 148404111
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5d1ab50f2c42ff3cc97bce3b49dbb4631b6edfd4ed78830005f04cc8007531b6
MD5 97caeba5cb692b334726aa76ac321ca0
BLAKE2b-256 3a20bc85445c4eb69b3e560495bc888018361fe4b30af2eb60f81f090759032c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 5d1ab50f2c42ff3cc97bce3b49dbb4631b6edfd4ed78830005f04cc8007531b6
    • Transparency log index: 148404013
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ea73a0a87920a709156256163ca29d14ccd6904bdbe5a4b0dcb9098c1da8f9ff
MD5 1b099bdb46e655a2b7fa99936592962d
BLAKE2b-256 75df20caf4b5b425e12840a71f9b7b3e7fcbe90e4a6aeda91c1af5a409bc2a71

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: ea73a0a87920a709156256163ca29d14ccd6904bdbe5a4b0dcb9098c1da8f9ff
    • Transparency log index: 148404002
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bafe77b98da15985091ef023f8bb145ba5f7a359c0df2994526b5185c0befa58
MD5 570d6b5022928cba46686a07aed8522d
BLAKE2b-256 fc5819fd6e8e213fd95f9c676b20a744dcf69c3a896146a4b667783618515181

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: bafe77b98da15985091ef023f8bb145ba5f7a359c0df2994526b5185c0befa58
    • Transparency log index: 148404113
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8c66661be8d0fc5a50f6ed79ec25b57b4cd67cc3967acc266107105bcb749561
MD5 2023d47f10b3d2e8e269f9afcce13432
BLAKE2b-256 f346624dd0a2ea12fe5a893f25610d9279d1ae73835528ced08b461a71da63f7

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-macosx_11_0_arm64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-macosx_11_0_arm64.whl
    • Subject digest: 8c66661be8d0fc5a50f6ed79ec25b57b4cd67cc3967acc266107105bcb749561
    • Transparency log index: 148404096
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c20f0d033d06897411ed5303b7272c2294f8fcb37306030a0080f088240feb5d
MD5 bcfbe5b540c96aa5c63963c78b0f8c7d
BLAKE2b-256 c75a2cbd0ba4228dc7efae18f886a769f388b3d6e19761d59df46a9c83d3ef4c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-macosx_10_9_x86_64.whl
    • Subject digest: c20f0d033d06897411ed5303b7272c2294f8fcb37306030a0080f088240feb5d
    • Transparency log index: 148403980
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 949a8a681e61475414f473e00402feb31700219b2e60862cfc62940b95d89f1b
MD5 bffddf36d283309225d238eafc7711c8
BLAKE2b-256 0cdd50e58154c2aaff5b322944f9ec098a1130a94d228a376932556de7ca7070

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp38-cp38-macosx_10_9_universal2.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp38-cp38-macosx_10_9_universal2.whl
    • Subject digest: 949a8a681e61475414f473e00402feb31700219b2e60862cfc62940b95d89f1b
    • Transparency log index: 148403975
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 82.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7961a4b5d003a3743c6976989fdf9a2b144dbed103fc32cda220b317185a6aab
MD5 5793f7f53ed7019916a10748c751e446
BLAKE2b-256 43e13cb8307b2ba57d9c0431bf9fa7257d22b9893e8ec92f3ea26a2b2ed8ac80

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp37-cp37m-win_amd64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp37-cp37m-win_amd64.whl
    • Subject digest: 7961a4b5d003a3743c6976989fdf9a2b144dbed103fc32cda220b317185a6aab
    • Transparency log index: 148404054
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: simsimd-6.0.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 52.4 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for simsimd-6.0.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c2178eee56335249daf13be171105e01270bd78535fc9e763f5154e4b38245ef
MD5 66d2e9e07501d1296721522fd1d14fe4
BLAKE2b-256 ddb4e324baafb9251e781c0a37fa3653ab45d04f163733da7dd6766cc4f91797

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp37-cp37m-win32.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp37-cp37m-win32.whl
    • Subject digest: c2178eee56335249daf13be171105e01270bd78535fc9e763f5154e4b38245ef
    • Transparency log index: 148404076
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 608427d1f3f4013641395c7cab304e482853ba8a7debb22a6829616a0f95fb24
MD5 bf9e42390e9b137c894f1c58d988a8f3
BLAKE2b-256 7b974baa7ea4a061518135a58fed4c3546d9807557055e0c0c62835cb569d515

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp37-cp37m-musllinux_1_2_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp37-cp37m-musllinux_1_2_x86_64.whl
    • Subject digest: 608427d1f3f4013641395c7cab304e482853ba8a7debb22a6829616a0f95fb24
    • Transparency log index: 148404062
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp37-cp37m-musllinux_1_2_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp37-cp37m-musllinux_1_2_s390x.whl
Algorithm Hash digest
SHA256 a09f3ff00b19b789f28a297f2103a9c9bd33714029850d9f040ba0b4daf51c93
MD5 42924a2484a9e6aaac4aa2abc7fbee15
BLAKE2b-256 b2cce1dcb807a9a177912cc077338ac7e639fda5c1272c567d4390444d0966d0

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp37-cp37m-musllinux_1_2_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp37-cp37m-musllinux_1_2_s390x.whl
    • Subject digest: a09f3ff00b19b789f28a297f2103a9c9bd33714029850d9f040ba0b4daf51c93
    • Transparency log index: 148404038
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp37-cp37m-musllinux_1_2_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp37-cp37m-musllinux_1_2_ppc64le.whl
Algorithm Hash digest
SHA256 a8aeaa207fc7056f917ef6077e58d5c6213b954a27e825d30c56a4f7639d66ba
MD5 5a4e6859405c33312e1d7edbd9bd83e3
BLAKE2b-256 097d040ce2079ab62559947c9d4611db3701064614a701665f0d2ed3b377ecb4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp37-cp37m-musllinux_1_2_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp37-cp37m-musllinux_1_2_ppc64le.whl
    • Subject digest: a8aeaa207fc7056f917ef6077e58d5c6213b954a27e825d30c56a4f7639d66ba
    • Transparency log index: 148404137
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 4930e24ac6aaafc769c77156e737802dba291ac796fb8bf1202ca213b74e974c
MD5 777ea0579924e52b2cbd349b50a4c8b1
BLAKE2b-256 4fe7c545e7b6ac8e6659c60cb289147c092368796f011777d34632643116b3a4

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp37-cp37m-musllinux_1_2_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp37-cp37m-musllinux_1_2_i686.whl
    • Subject digest: 4930e24ac6aaafc769c77156e737802dba291ac796fb8bf1202ca213b74e974c
    • Transparency log index: 148403960
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp37-cp37m-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp37-cp37m-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 8fcd9e4af49c204ebab3274f3973a2faea1f561e596f9ea90363535eff79cf40
MD5 8e83694f99c8e834a8a6c150dc8154d2
BLAKE2b-256 c7aa5394ca15489423545cfd00dc9f4b4996a0e61ae66a8af09d3b1efe80e1c3

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp37-cp37m-musllinux_1_2_armv7l.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp37-cp37m-musllinux_1_2_armv7l.whl
    • Subject digest: 8fcd9e4af49c204ebab3274f3973a2faea1f561e596f9ea90363535eff79cf40
    • Transparency log index: 148404088
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 edc18e11002e4a483858766046831d1ce845568d6b95b0ebc08c2e4c48a2cc17
MD5 261388adc6ae384fb4d53c3c0e8ac071
BLAKE2b-256 9526549f066349b717d2a3e2fe0bbb998f525c48b68e26ac3c8ab894116174b1

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp37-cp37m-musllinux_1_2_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp37-cp37m-musllinux_1_2_aarch64.whl
    • Subject digest: edc18e11002e4a483858766046831d1ce845568d6b95b0ebc08c2e4c48a2cc17
    • Transparency log index: 148404091
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ffc4d4a970315ba1d3dcbdd2a63cd41a88b5de5bfdbedcbcd31e89a4052532c9
MD5 848708cacdf7a4320c054bfaf5b4f521
BLAKE2b-256 d29c8ca4d3c481b248b8f88a0ab8383ae121bed4d441865e53e99c32fdcc2c9c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp37-cp37m-manylinux_2_28_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp37-cp37m-manylinux_2_28_x86_64.whl
    • Subject digest: ffc4d4a970315ba1d3dcbdd2a63cd41a88b5de5bfdbedcbcd31e89a4052532c9
    • Transparency log index: 148404107
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp37-cp37m-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp37-cp37m-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 61e20f80b3237da7e65fdf24b815f728daa405aaf95933eb2ae0c2e6eedd3468
MD5 a0bb87cce9f4a92c8cdb025ba249c66a
BLAKE2b-256 9450f254c26450e1085dd8a89435ab4760a146fa03322fffdac6d91a32487eda

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp37-cp37m-manylinux_2_28_aarch64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp37-cp37m-manylinux_2_28_aarch64.whl
    • Subject digest: 61e20f80b3237da7e65fdf24b815f728daa405aaf95933eb2ae0c2e6eedd3468
    • Transparency log index: 148404037
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 824c26e106b260baaef2bc09dd921dada1544e0cded0a1b93c0af1168ede1ef4
MD5 2bf5d5a001a23c86282bc7f2616f5eb9
BLAKE2b-256 5976f2c656405d590e584418e643ab1a441a3c39866efca2b1de48cf7318b13c

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp37-cp37m-manylinux2014_s390x.manylinux_2_17_s390x.whl
    • Subject digest: 824c26e106b260baaef2bc09dd921dada1544e0cded0a1b93c0af1168ede1ef4
    • Transparency log index: 148404093
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5a93dfbe322ba7f30facd257e5d868e0a19cd53daa7e3cf76c71241445f46902
MD5 fef2656041a52b8abbac9fd82e53056f
BLAKE2b-256 7b5c364c7540579b54b828f758f7694812d8688a668be6499a7057253c523770

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp37-cp37m-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl
    • Subject digest: 5a93dfbe322ba7f30facd257e5d868e0a19cd53daa7e3cf76c71241445f46902
    • Transparency log index: 148404083
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fdeef507c2e50b6113d3feec9d6f60dbfcd37ea6b5823a067a34837a866d4a6b
MD5 a371727eba92a2b1f49e287c06b3d4a2
BLAKE2b-256 0032a01d9c78f839d57af1f929117eb159c4d51bbaf103cb21360b81f268c955

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp37-cp37m-manylinux2014_i686.manylinux_2_17_i686.whl
    • Subject digest: fdeef507c2e50b6113d3feec9d6f60dbfcd37ea6b5823a067a34837a866d4a6b
    • Transparency log index: 148404144
    • Transparency log integration time:

File details

Details for the file simsimd-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 795c8192ae33dfbb9df5f7e7ca05c41a286a397238434cd7cb18f56baa721d4b
MD5 774205fca3c09915bddb9d64072beab9
BLAKE2b-256 54868f04a19c89466281959e7939282e6093f81f73be7488ae7b1443a21c2eb1

See more details on using hashes here.

Provenance

The following attestation bundles were made for simsimd-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl:

Publisher: GitHub
  • Repository: ashvardanian/SimSIMD
  • Workflow: release.yml
Attestations:
  • Statement type: https://in-toto.io/Statement/v1
    • Predicate type: https://docs.pypi.org/attestations/publish/v1
    • Subject name: simsimd-6.0.5-cp37-cp37m-macosx_10_9_x86_64.whl
    • Subject digest: 795c8192ae33dfbb9df5f7e7ca05c41a286a397238434cd7cb18f56baa721d4b
    • Transparency log index: 148404079
    • Transparency log integration time:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page