SimpleSQLite is a Python library to simplify SQLite database operations: table creation, data insertion and get data as other data formats.
Project description
SimpleSQLite
Summary
SimpleSQLite is a Python library to simplify SQLite database operations: table creation, data insertion and get data as other data formats.
Features
Automated SQLite table creation from data
- Support various data types of record(s) insertion into a table:
dict
namedtuple
list
tuple
- Create table(s) from:
CSV file/text
JSON file/text
pandas.DataFrame instance
tabledata.TableData instance loaded by pytablereader
- Get data from a table as:
pandas.DataFrame instance
tabledata.TableData instance
Examples
Create a table
Create a table from data matrix
- Sample Code:
import json from simplesqlite import SimpleSQLite table_name = "sample_table" con = SimpleSQLite("sample.sqlite", "w") # create table ----- data_matrix = [ [1, 1.1, "aaa", 1, 1], [2, 2.2, "bbb", 2.2, 2.2], [3, 3.3, "ccc", 3, "ccc"], ] con.create_table_from_data_matrix( table_name, attr_name_list=["attr_a", "attr_b", "attr_c", "attr_d", "attr_e"], data_matrix=data_matrix) # display values in the table ----- print(con.get_attr_name_list(table_name)) result = con.select(select="*", table_name=table_name) for record in result.fetchall(): print(record) # display data type for each column in the table ----- print(json.dumps(con.get_attr_type(table_name), indent=4))
- Output:
['attr_a', 'attr_b', 'attr_c', 'attr_d', 'attr_e'] (1, 1.1, u'aaa', 1.0, u'1') (2, 2.2, u'bbb', 2.2, u'2.2') (3, 3.3, u'ccc', 3.0, u'ccc') { "attr_b": " REAL", "attr_c": " TEXT", "attr_a": " INTEGER", "attr_d": " REAL", "attr_e": " TEXT" }
Create a table from CSV
- Sample Code:
from simplesqlite import SimpleSQLite with open("sample_data.csv", "w") as f: f.write("\n".join([ '"attr_a","attr_b","attr_c"', '1,4,"a"', '2,2.1,"bb"', '3,120.9,"ccc"', ])) # create table --- con = SimpleSQLite("sample.sqlite", "w") con.create_table_from_csv("sample_data.csv") # output --- table_name = "sample_data" print(con.get_attr_name_list(table_name)) result = con.select(select="*", table_name=table_name) for record in result.fetchall(): print(record)
- Output:
['attr_a', 'attr_b', 'attr_c'] (1, 4.0, u'a') (2, 2.1, u'bb') (3, 120.9, u'ccc')
Create a table from pandas.DataFrame
- Sample Code:
from simplesqlite import SimpleSQLite import pandas con = SimpleSQLite("pandas_df.sqlite") con.create_table_from_dataframe(pandas.DataFrame( [ [0, 0.1, "a"], [1, 1.1, "bb"], [2, 2.2, "ccc"], ], columns=['id', 'value', 'name'] ), table_name="pandas_df")
- Output:
$ sqlite3 pandas_df.sqlite sqlite> .schema CREATE TABLE 'pandas_df' (id INTEGER, value REAL, name TEXT);
Insert records into a table
Insert dictionary
- Sample Code:
from simplesqlite import SimpleSQLite table_name = "sample_table" con = SimpleSQLite("sample.sqlite", "w") con.create_table_from_data_matrix( table_name, attr_name_list=["attr_a", "attr_b", "attr_c", "attr_d", "attr_e"], data_matrix=[[1, 1.1, "aaa", 1, 1]]) con.insert( table_name, record={ "attr_a": 4, "attr_b": 4.4, "attr_c": "ddd", "attr_d": 4.44, "attr_e": "hoge", }) con.insert_many( table_name, record_list=[ { "attr_a": 5, "attr_b": 5.5, "attr_c": "eee", "attr_d": 5.55, "attr_e": "foo", }, { "attr_a": 6, "attr_c": "fff", }, ]) result = con.select(select="*", table_name=table_name) for record in result.fetchall(): print(record)
- Output:
(1, 1.1, 'aaa', 1, 1) (4, 4.4, 'ddd', 4.44, 'hoge') (5, 5.5, 'eee', 5.55, 'foo') (6, None, 'fff', None, None)
Insert list/tuple/namedtuple
- Sample Code:
from collections import namedtuple from simplesqlite import SimpleSQLite table_name = "sample_table" con = SimpleSQLite("sample.sqlite", "w") con.create_table_from_data_matrix( table_name, attr_name_list=["attr_a", "attr_b", "attr_c", "attr_d", "attr_e"], data_matrix=[[1, 1.1, "aaa", 1, 1]]) SampleTuple = namedtuple( "SampleTuple", "attr_a attr_b attr_c attr_d attr_e") con.insert(table_name, record=[7, 7.7, "fff", 7.77, "bar"]) con.insert_many( table_name, record_list=[ (8, 8.8, "ggg", 8.88, "foobar"), SampleTuple(9, 9.9, "ggg", 9.99, "hogehoge"), ]) result = con.select(select="*", table_name=table_name) for record in result.fetchall(): print(record)
- Output:
(1, 1.1, u'aaa', 1, 1) (7, 7.7, u'fff', 7.77, u'bar') (8, 8.8, u'ggg', 8.88, u'foobar') (9, 9.9, u'ggg', 9.99, u'hogehoge')
Get Data from a table as pandas DataFrame
- Sample Code:
from simplesqlite import SimpleSQLite con = SimpleSQLite("sample.sqlite", "w", profile=True) con.create_table_from_data_matrix( table_name="sample_table", attr_name_list=["a", "b", "c", "d", "e"], data_matrix=[ [1, 1.1, "aaa", 1, 1], [2, 2.2, "bbb", 2.2, 2.2], [3, 3.3, "ccc", 3, "ccc"], ]) print(con.select_as_dataframe(table_name="sample_table"))
- Output:
$ sample/select_as_dataframe.py a b c d e 0 1 1.1 aaa 1.0 1 1 2 2.2 bbb 2.2 2.2 2 3 3.3 ccc 3.0 ccc
For more information
More examples are available at http://simplesqlite.rtfd.io/en/latest/pages/examples/index.html
Installation
pip install SimpleSQLite
Dependencies
Python 2.7+ or 3.4+
Mandatory Dependencies
DataPropery (Used to extract data types)
Optional Dependencies
Test Dependencies
Documentation
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for SimpleSQLite-0.20.3-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c1d41451c1d6a5aed6632ebee71dcc42929fb8a1ab3e774b53828d18ca57cedf |
|
MD5 | aa031602ebbfb1b5cb9443f5a8ae06ba |
|
BLAKE2b-256 | 5d875bd276ac16695ab5efc94b558e0e83e0744208ab389ce9493f4b31a0a425 |