Skip to main content

Flexible implementation of Simulated Annealing algorithm for function minimization

Project description

PyPI version Downloads Downloads Downloads

Simplest simulated annealing

Simplest implementation of simulated annealing method

pip install SimplestSimulatedAnnealing

Idea of method

This is the evolutionary algorithm for function minimization. Steps of algorithm:

  1. We should determine function f must be minimized
  2. Determine start solution x0 (can be random)
  3. Determine mutation function mut. This function should give new (can be random) x1 solution using information about x0 and temperature T.
  4. Select or create cooling regime(s) (temperature behavior)
  5. Set start temperature(s) T
  6. Run searching:
    • at start we have x0 solution and f(x0) best score
    • let's create mutant x1 = mut(x0) and calculate f(x1)
    • if f(x1) < f(x0), we found better solution x0 = x1. Otherwise we can replace x1 with x0 with probability equals exp((f(x0) - f(x1)) / T)
    • decrease T using cooling function: T = cooling(T)
    • repeat last 3 steps until stop criterion

Simple usage

Import packages:

import math
import numpy as np

from SimplestSimulatedAnnleaning import SimulatedAnnealing, Cooling, simple_continual_mutation

Determine minimized function (Rastrigin):

def Rastrigin(arr):
    return 10*arr.size+np.sum(arr**2) - 10*np.sum(np.cos(2*math.pi*arr))

dim = 5

We will use simplest gauss mutation:

mut = simple_continual_mutation(std = 0.5)

Create model object (set function and dimension):

model = SimulatedAnnealing(Rastrigin, dim)

Start searching and see report:

best_solution, best_val = model.run(
    start_solution = np.random.uniform(-5, 5, dim),
    mutation = mut,
    cooling = Cooling.exponential(0.9), 
    start_temperature = 100, 
    max_function_evals = 1000, 
    max_iterations_without_progress = 100, 
    step_for_reinit_temperature = 80
    )

model.plot_report(save_as = 'simple_example.png')

Parameters of method

Main method of the package is run(). Let's check it's arguments:

model.run(start_solution, 
          mutation, 
          cooling, 
          start_temperature, 
          max_function_evals = 1000, 
          max_iterations_without_progress = 250, 
          step_for_reinit_temperature = 90,
          reinit_from_best = False,
          seed = None)

Where:

  • start_solution : numpy array; solution from which it should start.

  • mutation : function (array, array/number). Function like

    def mut(x_as_array, temperature_as_array_or_one_number):
        # some code
        return new_x_as_array
    

    This function will create new solutions from existing. See also

  • cooling : cooling function / functions list. Cooling function or a list of ones. See

  • start_temperature : number or number array (list/tuple). Start temperatures. Can be one number or an array of numbers.

  • max_function_evals : int, optional. Maximum number of function evaluations. The default is 1000.

  • max_iterations_without_progress : int, optional. Maximum number of iterations without global progress. The default is 250.

  • step_for_reinit_temperature : int, optional. After this number of iterations without progress temperatures will be initialized as like start. The default is 90.

  • reinit_from_best : boolean, optional. Start algorithm from best solution after reinit temperatures (or from last current solution). The default is False.

  • seed : int/None, optional. Random seed (if needed)

Temperature regimes

Pattern

The important part of algorithm is cooling function. This function controls temperature value depended on current iteration number, current temperature and start temperature. U can create your own cooling function using pattern:

def func(T_last, T0, k):
    # some code
    return T_new

Here T_last (int/float) is the temperature value from previous iteration, T0 (int/float) is the start temperature and k (int > 0) is the number of iteration. U should use some of this information to create new temperature T_new.

It's highly recommended to build your function to create only positive temperature.

Available functions

In Cooling class there are several cooling functions:

  • Cooling.linear(mu, Tmin = 0.01)
  • Cooling.exponential(alpha = 0.9)
  • Cooling.reverse(beta = 0.0005)
  • Cooling.logarithmic(c, d = 1) - not recommended
  • Cooling.linear_reverse()

Plot temperature

U can see the behavior of cooling function using SimulatedAnnealing.plot_temperature method. Let's see several examples:

from SimplestSimulatedAnnleaning import SimulatedAnnealing, Cooling


# simplest way to set cooling regime
temperature = 100
cooling = Cooling.reverse(beta = 0.001)
# we can temperature behaviour using this code
SimulatedAnnealing.plot_temperature(cooling, temperature, iterations = 100, save_as = 'reverse.png')

# we can set several temparatures (for each dimention)
temperature = [150, 100, 50]
SimulatedAnnealing.plot_temperature(cooling, temperature, iterations = 100, save_as = 'reverse_diff_temp.png')

# or several coolings (for each dimention)
temperature = 100
cooling = [
    Cooling.reverse(beta = 0.0001),
    Cooling.reverse(beta = 0.0005),
    Cooling.reverse(beta = 0.001)
    ]
SimulatedAnnealing.plot_temperature(cooling, temperature, iterations = 100, save_as = 'reverse_diff_beta.png')

# all supported coolling regimes

temperature = 100
cooling = [
    Cooling.linear(mu = 1),
    Cooling.reverse(beta = 0.0007),
    Cooling.exponential(alpha = 0.85),
    Cooling.linear_reverse(),
    Cooling.logarithmic(c = 100, d = 1)
    ]
SimulatedAnnealing.plot_temperature(cooling, temperature, iterations = 100, save_as = 'diff_temp.png')

# and we can set own temperature and cooling for each dimention!

temperature = [100, 125, 150]
cooling = [
    Cooling.exponential(alpha = 0.85),
    Cooling.exponential(alpha = 0.9),
    Cooling.exponential(alpha = 0.95),
    ]
SimulatedAnnealing.plot_temperature(cooling, temperature, iterations = 100, save_as = 'diff_temp_and_cool.png')

Difference between coolings

Why there are so many cooling regimes? For certain task one of them can be such better! In this script we can test different cooling for Rastring function:

Multiple coolings

It's amazing feature to use different coolings and start temperatures for each dimension:

import math
import numpy as np

from SimplestSimulatedAnnleaning import SimulatedAnnealing, Cooling, simple_continual_mutation


def Rastrigin(arr):
    return 10*arr.size+np.sum(arr**2) - 10*np.sum(np.cos(2*math.pi*arr))

dim = 5



model = SimulatedAnnealing(Rastrigin, dim)

best_solution, best_val = model.run(
    start_solution = np.random.uniform(-5, 5, dim),
    mutation = simple_continual_mutation(std = 1),
    cooling = [ # different cooling for each dimention
        Cooling.exponential(0.8),
        Cooling.exponential(0.9),
        Cooling.reverse(beta = 0.0005),
        Cooling.linear_reverse(),
        Cooling.reverse(beta = 0.001)
        ], 
    start_temperature = 100, 
    max_function_evals = 1000, 
    max_iterations_without_progress = 250, 
    step_for_reinit_temperature = 90,
    reinit_from_best = False
    )

print(best_val)

model.plot_report(save_as = 'different_coolings.png')

Give a change to multiple coolings

Main reason to use multiple coolings is the specifying behavior of each dimension. For example, first dimension of space can be much wider than second dimension therefore it's better to use wider search for first dimension; u can produce it using special mut function, using different start temperatures and using different coolings.

Another reason to use multiple coolings is the way of selection: for multiple coolings selection between good and bad solutions applies by each dimension. So, it increases chances to find better solution.

About mutation

Mutation function is the most important parameter. It determines the behavior of creating new objects using information about current object and about temperature. I recommend to count these principles when creating mut function:

  1. mutant solution should be random but "close" to current solution
  2. mutant solution usually should be closer as the temperature decreases

Let's recall the structure of mut:

def mut(x_as_array, temperature_as_array_or_one_number):
    # some code
    return new_x_as_array

Here x_as_array is the current solution and new_x_as_array is the mutated solution (random and with same dim, as u remember). Also u should remember that temperature_as_array_or_one_number is number only for non-multicooling solution. Otherwise (when using several start temperatures of several coolings or both) it is numpy array. See examples

Examples

Select best subset

In this example I show how to select k objects from set with n objects which will minimize some function (in this example: absolute value of median):

import numpy as np
from SimplestSimulatedAnnleaning import SimulatedAnnealing, Cooling

SEED = 3

np.random.seed(SEED)

Set = np.random.uniform(low = -15, high=5, size = 100) # all set

dim = 10 # how many objects should we choose

indexes = np.arange(Set.size)
# minimized function -- subset with best |median|
def min_func(arr):
    return abs(np.median(Set[indexes[arr.astype(bool)]]))

# zero vectors with 'dim' ones at random positions 
start_solution = np.zeros(Set.size)
start_solution[np.random.choice(indexes, dim, replace=False)] = 1

# mutation function
# temperature is the number cuz we will use only 1 cooling, but it's not necessary to use it)
def mut(x_as_array, temperature_as_array_or_one_number):
    mask_one = x_as_array == 1
    mask_zero = np.logical_not(mask_one)

    new_x_as_array = x_as_array.copy()
    # replace some zeros with ones
    new_x_as_array[np.random.choice(indexes[mask_one], 1, replace=False)] = 0
    new_x_as_array[np.random.choice(indexes[mask_zero], 1, replace=False)] = 1

    return new_x_as_array

# creating a model
model = SimulatedAnnealing(min_func, dim)

# run search
best_solution, best_val = model.run(
    start_solution = start_solution,
    mutation = mut,
    cooling = Cooling.exponential(0.9), 
    start_temperature = 100, 
    max_function_evals = 1000, 
    max_iterations_without_progress = 100, 
    step_for_reinit_temperature = 80,
    seed = SEED
    )

model.plot_report(save_as = 'best_subset.png')

Travelling salesman problem

Let's try to solve Travelling salesman problem for berlin52 task. In this task there are 52 cities with coordinates from file.

Firstly, let's import packages:

import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from SimplestSimulatedAnnleaning import SimulatedAnnealing, Cooling

Set seed for reproducing:

SEED = 1
np.random.seed(SEED)

Read coordinates and create distance matrix:

# read coordinates
coords = pd.read_csv('berlin52_coords.txt', sep=' ', header= None, names = ['index', 'x', 'y'])

# dim is equal to count of cities
dim = coords.shape[0]

# distance matrix
distances = np.empty((dim, dim))

for i in range(dim):
    distances[i,i] = 0
    for j in range(i+1, dim):
        d = math.sqrt(np.sum((coords.iloc[i, 1:]-coords.iloc[j, 1:])**2))
        distances[i,j] = d
        distances[j,i] = d

Create random start solution:

indexes = np.arange(dim)
# some start solution (indexes shuffle)
start_solution = np.random.choice(indexes, dim, replace = False)

Define a function which computes the length of way:

# minized function
def way_length(arr):
    s = 0
    for i in range(1, dim):
        s += distances[arr[i-1], arr[i]]
    # also we should end the way in the beggining
    s += distances[arr[-1], arr[1]]

    return s

Let's visualize start solution:

def plotData(indices, title, save_as = None):

    # create a list of the corresponding city locations:
    locs = [coords.iloc[i, 1:] for i in indices]
    locs.append(coords.iloc[indices[0], 1:])

    # plot a line between each pair of consequtive cities:
    plt.plot(*zip(*locs), linestyle='-', color='blue')

    # plot the dots representing the cities:
    plt.scatter(coords.iloc[:, 1], coords.iloc[:, 2], marker='o', s = 40, color='red')    
    plt.title(title)

    if not (save_as is None):  plt.savefig(save_as, dpi = 300)

    plt.show()


# let's plot start solution
plotData(start_solution, f'start random solution (score = {round(way_length(start_solution), 2)})','salesman_start.png')

It's really not good solution. I wanna create this mutation function for this task:

def mut(x_as_array, temperature_as_array_or_one_number):
    # random indexes
    rand_inds = np.random.choice(indexes, 3, replace = False)
    # shuffled indexes
    goes_to = np.random.permutation(rand_inds)

    # just replace some positions in the array
    new_x_as_array = x_as_array.copy()
    new_x_as_array[rand_inds] = new_x_as_array[goes_to]

    return new_x_as_array

Start searching:

# creating a model
model = SimulatedAnnealing(way_length, dim)

# run search
best_solution, best_val = model.run(
    start_solution = start_solution,
    mutation = mut,
    cooling = Cooling.exponential(0.9), 
    start_temperature = 100, 
    max_function_evals = 15000, 
    max_iterations_without_progress = 2000, 
    step_for_reinit_temperature = 80,
    reinit_from_best = True,
    seed = SEED
    )

model.plot_report(save_as = 'best_salesman.png')

And see our so much better solution:

plotData(best_solution, f'result solution (score = {round(best_val, 2)})','salesman_result.png')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SimplestSimulatedAnnealing-1.0.2.tar.gz (9.4 kB view hashes)

Uploaded Source

Built Distribution

SimplestSimulatedAnnealing-1.0.2-py3-none-any.whl (10.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page