Skip to main content

SimulatedLIBS provides simple Python class to simulate LIBS spectra with NIST LIBS Database interface

Project description

Simulated LIBS

PyPI version License Tests ZENADO DOI

SimulatedLIBS provides Python class to simulate LIBS spectra with NIST LIBS Database interface. SimulatedLIBS also allows the creation of simulated data sets that can be used to train ML models. SimulatedLIBS was mentioned is FOSS For Spectroscopy by Prof. Bryan A. Hanson, DePauw University.

Project created for B.Eng. thesis: Computer methods of the identification of the elements in optical spectra obtained by Laser Induced Breakdown Spectroscopy.

Thesis supervisor: Paweł Gąsior PhD e-mail: pawel.gasior@ifpilm.pl Institute of Plasma Physics and Laser Microfusion - IPPLM

Installation

pip install SimulatedLIBS

Import

from SimulatedLIBS import simulation

Example

Parameters:

  • Te - electron temperature [eV]
  • Ne - electron density [cm^-3]
  • elements - list of elements
  • percentages - list of elements concentrations
  • resoulution
  • wavelength range: low_w, upper_w
  • maximal ion charge: max_ion_charge
  • websraping: 'static' or 'dynamic'

Static websraping

libs = simulation.SimulatedLIBS(Te=1.0,
                                Ne=10**17,
                                elements=['W','Fe','Mo'],
                                percentages=[50,25,25],
                                resolution=1000,
                                low_w=200,
                                upper_w=1000,
                                max_ion_charge=3,
                                webscraping='static')

Plot

libs.plot(color='blue', title='W Fe Mo composition')

Save to file

libs.save_to_csv('filename.csv')

Interpolated spectrum

SimulatedLIBS interpolates retrieved data from NIST with cubic splines.

libs.get_interpolated_spectrum()

Raw spectrum

Raw retrieved data from NIST

libs.get_raw_spectrum()

Dynamic webscraping

libs = simulation.SimulatedLIBS(Te=1.0,
                                Ne=10**17,
                                elements=['W','Fe','Mo'],
                                percentages=[50,25,25],
                                resolution=1000,
                                low_w=200,
                                upper_w=1000,
                                max_ion_charge=3,
                                webscraping='dynamic')

Plot

libs.plot(color='blue', title='W Fe Mo composition')

Ion spectra

After simulation with parameter websraping = dynamic, ion spectra are stored in ion_spectra (pd.DataFrame) and can be plotted.

libs.plot_ion_spectra()

Random dataset of samples

Based on .csv file with chemical composition of samples, one can generate dataset of simulated LIBS measurements with different Te and Ne values.

Example of input .csv file:

W H He name
50 25 25 A
30 60 10 B
40 40 20 C
simulation.SimulatedLIBS.create_dataset(input_csv_file="data.csv",
                                        output_csv_file='output.csv',
                                        size=100,
                                        Te_min=1.0,
                                        Te_max=2.0,
                                        Ne_min=10**17,
                                        Ne_max=10**18)

Example of output .csv file:

200.0 200.1 200.2 200.3 200.4 ... H W Te Ne
0 0 0 0 0 0 ... 2 50 1.43 1.08e+17
1 0 0 0 0 0 ... 0 0 1.06 1.08e+17
2 0 0.1 0.1 0.1 0.1 ... 0 68 1.82 1.18e+17
3 0 54.5 56.7 54.4 48.4 ... 0 3 1.25 1.06e+17
4 0 121.7 143.1 140.5 115.3 ... 0 84 1.08 9.23e+17

Animations

SimulatedLIBS can be helpful in creating LIBS animations mostly for educational purpose.

Resolution animation

Changes in resolution in range: 500-10000.

Electron temperature animation

Changes in electron temperature Te in range: 0.5-5 eV.

Electron density animation

Changes in electron density Ne in range: 0.7-1.3 e+17 [cm^-3].

References

  • M. Kastek, et al., Analysis of hydrogen isotopes retention in thermonuclear reactors with LIBS supported by machine learning. Spectrochimica Acta Part B Atomic Spectroscopy 199: 106576. DOI: 10.1016/j.sab.2022.106576.

Used in Research

  • Chen Z, Chen Z, Jiang W, Guo L, Zhang Y. Line intensity calculation of laser-induced breakdown spectroscopy during plasma expansion in nonlocal thermodynamic equilibrium. Opt Lett. 2023 Jun 15;48(12):3227-3230. DOI: 10.1364/OL.488250.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SimulatedLIBS-1.1.0.tar.gz (7.9 MB view details)

Uploaded Source

Built Distribution

SimulatedLIBS-1.1.0-py3-none-any.whl (9.6 kB view details)

Uploaded Python 3

File details

Details for the file SimulatedLIBS-1.1.0.tar.gz.

File metadata

  • Download URL: SimulatedLIBS-1.1.0.tar.gz
  • Upload date:
  • Size: 7.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for SimulatedLIBS-1.1.0.tar.gz
Algorithm Hash digest
SHA256 66ff9cb2081a9bb6dd3991b9ff6c1165338ccf9cd18a95c6fd8a19f5dc7a6d9e
MD5 d30692ef50e554113ea3f03fb9375b9c
BLAKE2b-256 3055baa065edffe6fdc40ddc096aaf4cc9eda399f9d625e59bf9b3dc1c678ed0

See more details on using hashes here.

File details

Details for the file SimulatedLIBS-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for SimulatedLIBS-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 3e5cc39d40ac805e645668af590910a21977502396f9754c67dd4ace951df542
MD5 8db633f20412f1eb2bbbc4d65d2ca5fd
BLAKE2b-256 0d4c1d03802fba45205985e7f853cb941c26877ed7f37166b8518a97fca42329

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page