Hyperparameters tuning of machine learning models provided by sklearn library using optuna
Project description
SkOpts
Library providing high-level functions for easy hyperparameters tuning of models using Optuna.
This repository contains the project of a library that offers ready-to-use functions to optimize the hyperparameters of some of models provided by the Sklearn API, XGBoost, LightGBM and CatBoost.
Code snippet to optimize a classification model:
from Tune_Xgboost import XGB_tuner
XGB_tuned=XGB_tuner(X=Xtrain,y=y_train,
scoring_metric='roc_auc',
n_trials=100,
N_folds=5,
direction='maximize',
stratify=True,
problem_type='classification')
Code snippet to optimize regression model:
from Tune_Xgboost import XGB_tuner
XGB_tuned=XGB_tuner(X=Xtrain,y=y_train,
scoring_metric='neg_mean_squared_error',
n_trials=100,
N_folds=5,
direction='minimize',
problem_type='regression')
Parameter | Usage |
---|---|
"X" | Training dataset without target variable. |
"y" | Target variable. |
"scoring_metric" | Metric to optimize. |
"n_trials" | Number of trials to execute optimization. |
"N_folds" | Number of folds for cross validation. |
"direction" | Equals "maximize" or "minimize". |
"problem_type" | Equals "classification" or "regression". |
"stratify" | Stratify cv splits based on target distribuition [True or False] |
The 'scoring_metric' parameter takes the same values from sklearn API (link of available list: https://scikit-learn.org/stable/modules/model_evaluation.html)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file SkOpts-0.0.1.tar.gz
.
File metadata
- Download URL: SkOpts-0.0.1.tar.gz
- Upload date:
- Size: 9.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 715a7734230482613c6ce5fd7ed653f711817904e23ea82eb92165f0f688515d |
|
MD5 | 46c3387f8f285b572bf7040484b72010 |
|
BLAKE2b-256 | e3d3b6fe60cfb0eb2f5dad38747c77fed13ed1699221c6643da52c5dfb480250 |
File details
Details for the file SkOpts-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: SkOpts-0.0.1-py3-none-any.whl
- Upload date:
- Size: 20.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e9eac166d7c573a450216cf97a077939be9a0c3352066186f0878cd5bb286e6b |
|
MD5 | df931c03ff44911518945601bf9fca61 |
|
BLAKE2b-256 | d2db3eb121c76fbe0308bacf642bf9dd5f414eb65e1e2db329a1fe1060ecaa62 |