SmileyDB3 is a library built on sqlite3 to make working with databases easier
Project description
SmileyDB3
SmileyDB3 is a library built on sqlite3 to make working with databases easier
Install
pip install SmileyDB3
Usage:
To use the SmileyDB3 class, you would typically instantiate an object of the class and provide the path or name of the SQLite database file as a parameter. For example:
db = SmileyDB3("mydatabase.db")
You can then call the table() method on the db object to create a new table in the database:
my_table = db.table("my_table")
The table() method returns a Table object (my_table in this example) that can be used to perform operations on the created table.
Insert or add new record
db = SmileyDB3('database.db')
tasks = db.table('tasks')
tasks.Insert(
data = {
'name': 'This is task name 2',
'description': 'This task description 2',
'coins': 50,
'workers': 80
}
)
Insert list of data
list_data = [
{'name': 'test 1', 'description': 'test 1', 'coins': 50, 'workers': 10},
{'name': 'test 2', 'description': 'test 2', 'coins': 500, 'workers': 20},
{'name': 'test 3', 'description': 'test 3', 'coins': 100, 'workers': 50},
{'name': 'test 4', 'description': 'test 4', 'coins': 5000, 'workers': 80}
]
tasks.InsertMany(data_list=list_data)
If you want to make a login system, SmileyDB3 makes it easy for you.
Register a new user
db = SmileyDB3('database.db')
users = db.table('users')
users.Register(data = {'email': 'test@example.com', 'password': '2020'})
Note
By default, the function 'Register' makes a hash for any password automatically. If you want to keep it as plain text, make sure that the value of 'password_hash' argument is False
db = SmileyDB3('database.db')
users = db.table('users')
users.Register(
data = {'email': 'test666@example.com', 'password': '2020'},
password_hash = False
)
Login
db = SmileyDB3('database.db')
users = db.table('users')
result = users.LogIn(
data = {'email': 'test666@example.com', 'password': '2020'},
)
print(result)
Result
{'_index': 3, 'email': 'test666@example.com', 'password': '2020', 'uuid': '2626a962-d5d7-49fa-98f1-53d4bd722ee9', 'created_at': '2024-07-11 11:10:46.319231'}
Get all records
print(tasks.GetALL())
Get records by id
print(tasks.GetByID(uuid='e927c787-bf9a-4ec7-b575-2efacd90728e'))
Get records by any column like name
print(tasks.GetBy(name = 'This is task name'))
You can use also FindBy or FilterBy function it will give you the same result
Get one record by any column like workers in this example
tasks = db.table('tasks')
print(tasks.FindOne(workers = 80))
Result
{'_index': 4, 'name': 'test 4', 'description': 'test 4', 'coins': 5000,
'workers': 80, 'uuid': '1fad0ed8-fbbc-4fc9-8e46-3f6c355dbf84', 'created_at': '2024-07-11 10:42:26.818831'}
Filtring records by any column
use larger_than, less_than, not, equal, between
example of how to use less_than filter
tasks = db.table('tasks')
print(tasks.Filter(
filter_keys = {'workers': {'less_than': 100}}
))
Result
[{'key': 'workers', 'records': [{'_index': 13, 'workers': 10, 'coins': 20, 'uuid': '5dcabe12-17b3-4a64-928c-a524b6fb6479', 'created_at': '2024-08-11 12:41:05.248027'}, {'_index': 19, 'workers': 50, 'coins': 50, 'uuid': 'f1273e5b-c937-45e4-931c-d1b6d9f31a51', 'created_at': '2024-08-11 12:43:27.156194'}, {'_index': 20, 'workers': 50, 'coins': 50, 'uuid': 'b1c67c92-6a2d-4a72-84a1-b5466d3ca839', 'created_at': '2024-08-11 12:44:17.355148'}, {'_index': 21, 'workers': 50, 'coins': 50, 'uuid': '4b46f78c-98b0-4dad-84c7-ac76af218102', 'created_at': '2024-08-11 12:44:27.422767'}, {'_index': 22, 'workers': 80, 'coins': 500, 'uuid': 'f0eecddd-d046-4fd6-b441-9188a3d73985', 'created_at': '2024-08-11 12:44:38.911006'}, {'_index': 25, 'workers': 71, 'coins': 809, 'uuid': '484bb9e4-647b-4dc2-afac-c3e27a0e613e', 'created_at': '2024-08-11 12:47:30.265126'}, {'_index': 27, 'workers': 50, 'coins': 394, 'uuid': 'da2ee6b2-3653-4cae-b570-510d998f09a2', 'created_at': '2024-08-11 12:47:52.165459'}, {'_index': 29, 'workers': 99, 'coins': 817, 'uuid': 'a6d3b21c-b2ba-4530-9e09-35b00a37e493', 'created_at': '2024-08-11 12:48:34.145886'}, {'_index': 31, 'workers': 71, 'coins': 463, 'uuid': 'c71a7b11-9b3b-4787-89d2-d7f19904e228', 'created_at': '2024-08-11
12:51:37.325311'}]}]
example of how to use between filter
tasks = db.table('tasks')
print(tasks.Filter(
filter_keys = {'workers': {'between': [100, 200]}}
))
Result
[{'key': 'workers', 'records': [{'_index': 1, 'workers': 200, 'coins': 20, 'uuid': '545145bc-c03e-4228-aece-d5a7e50c996f', 'created_at': '2024-08-11 12:27:05.446859'}, {'_index': 14, 'workers': 100, 'coins': 20, 'uuid': '6d84bceb-5f8f-464b-97b1-f6b46906149b', 'created_at': '2024-08-11 12:41:44.623149'}, {'_index': 15, 'workers': 200, 'coins': 20, 'uuid': '4e25ace6-b167-483d-97bc-6f765f324560', 'created_at': '2024-08-11 12:41:49.830534'}, {'_index': 16, 'workers': 200, 'coins': 20, 'uuid': 'c4542f0d-1238-4631-8518-02c3e67809dd', 'created_at': '2024-08-11 12:42:32.767674'}, {'_index': 17, 'workers': 200, 'coins': 20, 'uuid': '37e6e806-5567-4fc7-bdab-89f520314b5f', 'created_at': '2024-08-11 12:42:51.708270'}]}]
Update record by uuid
result = tasks.Update(
uuid='31c37a83-02db-4e8d-9d62-124888626892',
data = {'coins': 1}
)
print(result)
Result
{'_index': 5, 'name': 'This is task name 2', 'description': 'This task description 2', 'coins': 1, 'workers': 80, 'uuid': '31c37a83-02db-4e8d-9d62-124888626892', 'created_at': '2024-07-11 10:24:26.020235'}
Update many by name or any other column name
result = tasks.UpdateMany(
data = {'coins': 1000},
name = 'This is task name 2'
)
print(result)
Result
[
{'_index': 2, 'name': 'This is task name 2', 'description': 'This task description 2', 'coins': 1000, 'workers': 80, 'uuid': 'e927c787-bf9a-4ec7-b575-2efacd90728e', 'created_at': '2024-07-11 10:09:48.163728'},
{'_index': 3, 'name': 'This is task name 2', 'description': 'This task description 2', 'coins': 1000, 'workers': 80, 'uuid': '9d74c2ea-b943-4aa9-bd06-52ba1beecc5b', 'created_at': '2024-07-11 10:23:49.426697'},
{'_index': 4, 'name': 'This is task name 2', 'description': 'This task description 2', 'coins': 1000, 'workers': 80, 'uuid': '93ed7665-f6e3-40be-ab3b-8d609eaf1896', 'created_at': '2024-07-11 10:24:16.574957'},
{'_index': 5, 'name': 'This is task name 2', 'description': 'This task description 2', 'coins': 1000, 'workers': 80, 'uuid': '31c37a83-02db-4e8d-9d62-124888626892', 'created_at': '2024-07-11
10:24:26.020235'
}
]
Delete record by uuid
tasks.Delete(uuid='b3bd4856-28f2-4d24-aaca-c22724d2e0a1')
Delete records by name or any other column name
tasks.DeleteMany(
name = 'This is task name 2'
)
Convert data to CSV, JSON, HTML, etc
tasks.convert().to_csv('out.csv')
tasks.convert().to_json('out.json')
Credits
sqlite3:
The sqlite3 library is part of the Python Standard Library, which means it is included with Python itself. You can import and use the sqlite3 module directly in your Python code without needing to install any additional
bcrypt:
Modern password hashing for your software and your servers
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Hashes for SmileyDB3-0.3.6-py3-none-any.whl
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 | 611c64071c3b1c179e468b015acfc8e8c56f8eeece009448b83b61bdc630e0f1 |
|
| MD5 | f96ea37d87bdc1c5afcd0a27375ea8a5 |
|
| BLAKE2b-256 | 5682769a26853785aab7cfb7f8508e375dc4006efef39556f0137f98590c9bf9 |