Spooq is a PySpark based helper library for ETL data ingestion pipeline in Data Lakes.
Project description
Welcome to Spooq!
Spooq is your PySpark based helper library for ETL data ingestion pipeline in Data Lakes.
- The main components are:
Extractors
Transformers
Loaders
Those components are independent and can be used separately or be plugged-in into a pipeline instance. You can also use the custom functions from the Mapper transformer directly with PySpark (f.e. select or withColumn).
Example of Mapper Transformer
from pyspark.sql import Row
from pyspark.sql import functions as F, types as T
from spooq.transformer import Mapper
from spooq.transformer import mapper_transformations as spq
input_df = spark.createDataFrame(
[
Row(
struct_a=Row(idx="000_123_456", sts="enabled", ts="1597069446000"),
struct_b=Row(itms="1,2,4", sts="whitelisted", ts="2020-08-12T12:43:14+0000"),
struct_c=Row(email="abc@def.com", gndr="F", dt="2020-08-05", cmt="fine"),
),
Row(
struct_a=Row(idx="000_654_321", sts="off", ts="1597069500784"),
struct_b=Row(itms="5", sts="blacklisted", ts="2020-07-01T12:43:14+0000"),
struct_c=Row(email="", gndr="m", dt="2020-06-27", cmt="faulty"),
),
],
schema="""
a: struct<idx string, sts string, ts string>,
b: struct<itms string, sts string, ts string>,
c: struct<email string, gndr string, dt string, cmt string>
"""
)
input_df.printSchema()
root
|-- a: struct (nullable = true)
| |-- idx: string (nullable = true)
| |-- sts: string (nullable = true)
| |-- ts: string (nullable = true)
|-- b: struct (nullable = true)
| |-- itms: string (nullable = true)
| |-- sts: string (nullable = true)
| |-- ts: string (nullable = true)
|-- c: struct (nullable = true)
| |-- email: string (nullable = true)
| |-- gndr: string (nullable = true)
| |-- dt: string (nullable = true)
| |-- cmt: string (nullable = true)
mapping = [
# output_name # source # transformation
("index", "a.idx", spq.to_int), # removes leading zeros and underline characters
("is_enabled", "a.sts", spq.to_bool), # recognizes additional words like "on", "off", "disabled", "enabled", ...
("a_updated_at", "a.ts", spq.to_timestamp), # supports unix timestamps in ms or seconds and strings
("items", "b.itms", spq.str_to_array(cast="int")), # splits a comma delimited string into an array and casts its elements
("block_status", "b.sts", spq.map_values(mapping={"whitelisted": "allowed", "blacklisted": "blocked"})), # applies lookup dictionary
("b_updated_at", "b.ts", spq.to_timestamp), # supports unix timestamps in ms or seconds and strings
("has_email", "c.email", spq.has_value), # interprets also empty strings as no value, although, zeros are values
("gender", "c.gndr", spq.apply(func=F.lower)), # applies provided function to all values
("creation_date", "c.dt", spq.to_timestamp(cast="date")), # explicitly casts result after transformation
("processed_at", F.current_timestamp(), spq.as_is), # source column is a function, no transformation to the results
("comment", "c.cmt", "string"), # no transformation, only cast; alternatively: spq.to_str or spq.as_is(cast="string")
]
output_df = Mapper(mapping).transform(input_df)
output_df.show(truncate=False)
+------+----------+-----------------------+---------+------------+-------------------+---------+------+-------------+----------------------+-------+
|index |is_enabled|a_updated_at |items |block_status|b_updated_at |has_email|gender|creation_date|processed_at |comment|
+------+----------+-----------------------+---------+------------+-------------------+---------+------+-------------+----------------------+-------+
|123456|true |2020-08-10 16:24:06 |[1, 2, 4]|allowed |2020-08-12 14:43:14|true |f |2020-08-05 |2022-08-12 09:17:09.83|fine |
|654321|false |2020-08-10 16:25:00.784|[5] |blocked |2020-07-01 14:43:14|false |m |2020-06-27 |2022-08-12 09:17:09.83|faulty |
+------+----------+-----------------------+---------+------------+-------------------+---------+------+-------------+----------------------+-------+
output_df.printSchema()
root
|-- index: integer (nullable = true)
|-- is_enabled: boolean (nullable = true)
|-- a_updated_at: timestamp (nullable = true)
|-- items: array (nullable = true)
| |-- element: integer (containsNull = true)
|-- block_status: string (nullable = true)
|-- b_updated_at: timestamp (nullable = true)
|-- has_email: boolean (nullable = false)
|-- gender: string (nullable = true)
|-- creation_date: date (nullable = true)
|-- processed_at: timestamp (nullable = false)
|-- comment: string (nullable = true)
Features / Components
Transformers
Extractors
Loaders
Installation
pip install spooq
Online Documentation
For a more details please consult the online documentation at
Changelog
Contribution
License
This library is licensed under the
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
spooq-3.4.2.tar.gz
(43.5 kB
view details)
Built Distribution
Spooq-3.4.2-py3-none-any.whl
(54.6 kB
view details)
File details
Details for the file spooq-3.4.2.tar.gz
.
File metadata
- Download URL: spooq-3.4.2.tar.gz
- Upload date:
- Size: 43.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46b1bfff8aeb7bc72a7f4d7dd6163330e319b5da33829590e1e5dfc0e6723856 |
|
MD5 | 409df4df89ddac63b24c18d83b13204b |
|
BLAKE2b-256 | dabdfd61fc4440d0e8d8836df7023a939d28ad520f8eaaebd3afbf755db060c1 |
File details
Details for the file Spooq-3.4.2-py3-none-any.whl
.
File metadata
- Download URL: Spooq-3.4.2-py3-none-any.whl
- Upload date:
- Size: 54.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 483f5bd3814e7723fcb9da0f497f0a1fb45cbf43987f8627b33d73e27c2bcc7e |
|
MD5 | 4352cf06c6750802b87a263eb1c76127 |
|
BLAKE2b-256 | 3f09c1661bfc62c5231f6584b8130b31832d7167a6d13ddd80417b497ca73eb5 |