Skip to main content

Suluoya

Project description

Suluoya

This is a package written by Suluoya not just for fun!

pip error

pip3 install --ignore-installed olefile

pip3 install --ignore-installed llvmlite

pip3 install --ignore-installed filelock

Upgrade Suluoya

import Suluoya as sly
sly.upgrade()

Welcome

import Suluoya as sly
sly.welcome()

(1)If you wanna get text from your clipboard...

import Suluoya as sly
sly.get_clipboard(show=True)
a = sly.get_clipboard()
print(a)

(2)If you wanna get content from a file...

Currently support 'doc','docx','ppt','pptx','txt'

import Suluoya as sly
content = sly.get_content(file=r'c:\lalala\1.docx')
print(content)

(3)If you wanna analyse your dataframe...

import Suluoya as sly
import pandas as pd
df = pd.read_csv('https://sakai.unc.edu/access/content/group/3d1eb92e-7848-4f55-90c3-7c72a54e7e43/public/data/bycatch.csv')
sly.report(df)
#This will make a html,just look for and open it!

(4) make a QRcode

fill in an url or some strings in content

fill in the name of the png in name

import Suluoya as sly
sly.QRcode(content='', name='')

2. Import

If you wanna auto import some packages...

use"import Suluoya.Import as SI" instead of "import pandas as pd,import numpy as np"...

#pass
import pandas as pd
import numpy as np
...
df = pd.Dataframe()
#now
import Suluoya.Import as SI
df = pd.Dataframe() # directly
SI.check() # just to check your import by using SI,can be omitted
# ps. go and see a file named "auto_imports.py"!

3. Crawl

from Suluoya.crawl import SlyCrawl as sc
sc=sc(url='',headers={},params={},cookies={},timeout=5)
print(sc.url)
print(sc.response)
print(sc.html)
print(sc.headers)
print(sc.params)
print(sc.cookies)
'''generate a fake useragent'''
print(sc.useragent)
'''parsel.css'''
print(sc.selector)
'''BeautifulSoup'''
print(sc.soup)
'''it will return a **dic** which contain title,text,description,keywords,tags,image,infomation and the raw_html'''
print(sc.text)
'''it will return a dictionary which contain text,title,html,author,image,movies,keywords and summary.'''
print(sc.news)
'''url links'''
print(sc.links)
'''pandas.read_html'''
print(sc.tables)

get proxies

from Suluoya.crawl import GetProxy as gp
proxies=gp(number=1)
print(proxies)

4. Download

from Suluoya.crawl import SlyDownload as sd
sd=sd(url='')

(1)download music

sd.download_music(path='d:\\')

(2)download video

sd.download_video()

(3)download anything you want with an URL

sd.download()

(4)download a big file

sd.download_big_file()

5. Text

(1)initialize

from Suluoya.text import SlyText as st
st=st('Suluoya','苏洛雅')

(2)translate

st=st('苏洛雅')
translate=st.translate
print(translate)

(3)gender guess

name should be a Chinese name!

st=st('苏洛雅')
gender=st.gender
print(gender)

(4)text compare

accurate=True --> accurate match mode

accurate=False --> fuzzy match mode

st=st('Suluoya','suluoya')
text_compare=st.compare(accurate=True)
print(text_compare)

(5)sentiment

language='C'-->Chinese

language='E'-->English

To download the necessary data,simply run "python -m textblob.download_corpora" before using it,if something goes wrong,then click https://zhuanlan.zhihu.com/p/272181552, https://www.cnblogs.com/liweikuan/p/14052001.html or https://mp.weixin.qq.com/s?__biz=MzI1NzczMDIwNw==&mid=2247483777&idx=1&sn=cd985f3f7fe0472df9560de94753d86d&chksm=ea13b271dd643b67a591485d249ca9f64aaa380db3ff16c462c0d2def5ccce114e3c938b955e&token=445308227&lang=zh_CN#rd

st=st('hello','sad')
sentiment=st.sentiment(language='E')
print(sentiment)

(6)draw a heart

st=st('Suluoya','苏洛雅')
st.heart

(7)voice synthesis

st=st('Suluoya','苏洛雅')
st.voice

6. Stock

(1)initialize

from Suluoya.stock import SlyStock as sk
sk=sk(names=['隆基股份','贵州茅台'],
     start_date='2020-12-01', 
     end_date='2020-12-31',
     frequency="w", #d→day,w→week,m→month
     holiday=False, #holiday → True
     holiday_name='国庆节', #'国庆节','春节'...
     before=-21,after=21)
print(
    sk.start_date,
    sk.end_date,
	sk.frequency,
    sk.names,
    sk.combinations,
    sk.information,
    sk.codes,
    sk.stock_pair,
    sk.data
    sk.holiday_name
)

(2)date and holiday information

from Suluoya.stock import GetDate
#initialize     if end == 'None',end=time.strftime("%Y%m%d", time.localtime())
gd=GetDate(start='20000101',end=None)
print(,gd.start,gd.end,gd.date)
print(gd.holiday)
print(gd.day)
print(gd.week)
print(gd.month)
print(gd.year)
print(gd.weekofyear)
print(gd.dayofyear)
print(gd.Date)#conclude all above

(3)stock data

reference: http://baostock.com/baostock/index.php/Python_API%E6%96%87%E6%A1%A3

from Suluoya.stock import GetStock

#1.股票数据
#initialize
gk = GetStock(names=['隆基股份','贵州茅台'], 
                  start_date='2020-12-01', 
                  end_date='2020-12-31',
                  frequency='w'     
                  )
combination=gk.comnine # return a dataframe
stockpair=gk.stock_pair
stockdata=gk.stock_data # return codes, stock pair, stock data
gk.quit() #Please don't forget it!

#2.节日股票数据
#initialize
ghs=GetHolidayStock(names=['隆基股份','贵州茅台'], 
                  start_date='2020-12-01', 
                  end_date='2020-12-31',
                  frequency='w',     
                  holiday='国庆节',
                   before=-21,
                   after=21)
combination=ghs.comnine # return a dataframe
HolidayDateNearby=ghs.HolidayDateNearby # return a dataframe
HolidayNearbyData=ghs.HolidayNearbyData # return codes, stock pair, stock data

#3.季频股票能力数据
#initialize
sa=StockAbility(names=None,
                 start_year=2018, start_quater=1,
                 end_year=2020, end_quater=4)
print(sa.Range) # time range
print(sa.stock_pair) # codes and names
print(sa.profit) # 盈利能力
print(sa.operation) # 营运能力
print(sa.growth) # 成长能力
print(sa.balance) # 偿债能力
print(sa.cash_flow) # 现金流量
print(sa.dupont_data) # 杜邦指数
print(sa.Allability) # 以上所有
sa.save_ability()
sa.quit() # Please don't forget it!

#4.行业分类及成分股
#initialize
cs=ConstituentStock()
print(cs.StockIndustry(names=['贵州茅台','五粮液'])) # 行业分类
print(cs.sz50) # 上证50成分股
print(cs.hs300) # 沪深300成分股
print(cs.zz500) # 中证500成分股

(4)calculate sharp ratio

#dic_sharp contains weights,risk,rate of return and sharp ratio
#eg. weights=[0.1,0.2,0.3,0.4],stock_list=['隆基股份','五粮液','贵州茅台','宁德时代']
#The stock_list should be in the names!
#no_risk_rate means “无风险收益率”
from Suluoya.stock import SlyStock as sk
dic_sharp = sk.sharp(weights=[], stock_list=[], no_risk_rate=0.45/5200)
print(dic_sharp)
sk.quit() # Please don't forget it!

(5)Markowit

from Suluoya.stock import SlyStock as sk
sk=sk(names=['隆基股份','贵州茅台'],
     start_date='2020-12-01', 
     end_date='2020-12-31',
     frequency="w"
     )
#if stock_list = [], stock_list = names
#accurate:True→gradient descent,False→500 random weights
markowit=sk.Markowit(stock_list=[],
                     accurate=True, 
                     number=500, 
                     no_risk_rate=0.45/5200)
print(markowit)

sk.quit() # Please don't forget it!

(6)investment portfolio

from Suluoya.stock import SlyStock as sk
sk=sk(names=['隆基股份','贵州茅台'],
     start_date='2020-12-01', 
     end_date='2020-12-31',
     frequency="w"
     )
# accurate=False
result = sk.portfolio(accurate=False, number=500, no_risk_rate=0.45/5200)
print(result)
# accurate=True
print(sk.save_result())

sk.quit() # Please don't forget it!

(7)choose good stocks

# get data from "http://fund.eastmoney.com/data/rankhandler.aspx"
from Suluoya.stock import GetGoodStock as gs
df=gs.GetGoodStock(page=5)
print(df)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Suluoya-1.6.4.tar.gz (17.9 kB view details)

Uploaded Source

File details

Details for the file Suluoya-1.6.4.tar.gz.

File metadata

  • Download URL: Suluoya-1.6.4.tar.gz
  • Upload date:
  • Size: 17.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.4.2 requests/2.25.1 setuptools/39.1.0 requests-toolbelt/0.9.1 tqdm/4.52.0 CPython/3.6.5

File hashes

Hashes for Suluoya-1.6.4.tar.gz
Algorithm Hash digest
SHA256 bee8e478d34ba7d18049d2aff873c4887c397e64c19133edafbf8ec940aa31c5
MD5 494d8b2b195131903e0ade5da214e08d
BLAKE2b-256 7adde95d09dfb59a40ddd7b217ae4a3ad8040be225afc738e21d65ec3caad248

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page