Skip to main content

Systematic Generation of potential MetAbolites

Project description

SyGMa is a python library for the Systematic Generation of potential Metabolites. It is a reimplementation of the metabolic rules outlined in Ridder, L., & Wagener, M. (2008) SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites. ChemMedChem, 3(5), 821-832.


SyGMa requires RDKit with INCHI support


  • Install with Anaconda: conda install -c 3d-e-Chem -c rdkit sygma



  • pip install sygma OR, after downloading sygma, python install

Example: generating metabolites of phenol

import sygma
from rdkit import Chem

# Each step in a scenario lists the ruleset and the number of reaction cycles to be applied
scenario = sygma.Scenario([
    [sygma.ruleset['phase1'], 1],
    [sygma.ruleset['phase2'], 1]])

# An rdkit molecule, optionally with 2D coordinates, is required as parent molecule
parent = Chem.MolFromSmiles("c1ccccc1O")

metabolic_tree =

print metabolic_tree.to_smiles()


SyGMa can be executed in a Docker ( container as follows:

docker run 3dechem/sygma c1ccccc1O

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SyGMa-1.1.0.tar.gz (13.8 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page