Skip to main content

Generate the same random numbers in R and Python

Project description

SyncRNG

build CRAN version CRAN package downloads PyPI version Python package downloads

Generate the same random numbers in R and Python.

Useful Links:

Contents: Introduction | Installation | Usage | Functionality | R: User defined RNG | Examples | Sampling without replacement | Sampling with replacement | Generating Normally Distributed Values | Creating the same train/test splits | Notes

Introduction

I created this package because I needed to have the same random numbers in both R and Python programs. Although both languages implement a Mersenne-Twister random number generator (RNG), the implementations are so different that it is not possible to get the same random numbers, even with the same seed.

SyncRNG is a "Tausworthe" RNG implemented in C and linked to both R and Python. Since both use the same underlying C code, the random numbers will be the same in both languages when the same seed is used. A Tausworthe generator is based on a linear feedback shift register and relatively easy to implement.

You can read more about my motivations for creating this here.

If you use SyncRNG in your work, please consider citing it. Here is a BibTeX entry you can use:

@misc{vandenburg2015syncrng,
  author={{Van den Burg}, G. J. J.},
  title={{SyncRNG}: Synchronised Random Numbers in {R} and {Python}},
  url={https://github.com/GjjvdBurg/SyncRNG},
  year={2015},
  note={Version 1.3}
}

Installation

Installing the R package can be done through CRAN:

> install.packages('SyncRNG')

The Python package can be installed using pip:

$ pip install syncrng

Usage

After installing the package, you can use the basic SyncRNG random number generator. In Python you can do:

>>> from SyncRNG import SyncRNG
>>> s = SyncRNG(seed=123456)
>>> for i in range(10):
>>>     print(s.randi())

And in R you can use:

> library(SyncRNG)
> s <- SyncRNG(seed=123456)
> for (i in 1:10) {
>    cat(s$randi(), '\n')
> }

You'll notice that the random numbers are indeed the same.

Functionality

In both R and Python the following methods are available for the SyncRNG class:

  1. randi(): generate a random integer on the interval [0, 2^32).
  2. rand(): generate a random floating point number on the interval [0.0, 1.0)
  3. randbelow(n): generate a random integer below a given integer n.
  4. shuffle(x): generate a permutation of a given list of numbers x.

Functionality is deliberately kept minimal to make maintaining this library easier. It is straightforward to build more advanced applications on the existing methods, as the examples below show.

R: User defined RNG

R allows the user to define a custom random number generator, which is then used for the common runif function in R. This has also been implemented in SyncRNG as of version 1.3.0. To enable this, run:

> library(SyncRNG)
> set.seed(123456, 'user', 'user')
> runif(10)

These numbers are between [0, 1) and multiplying by 2**32 - 1 gives the same results as above. Note that while this works for low-level random number generation using runif, it is not guaranteed that higher-level functions that build on this (such as rnorm and sample) translate easily to similar functions in Python. This has likely to do with R's internal implementation for these functions. Using random number primitives from SyncRNG directly is therefore generally more reliable. See the examples below for sampling and generating normally distributed values with SyncRNG.

Examples

This section contains several examples of functionality that can easily be built on top of the primitives that SyncRNG provides.

Sampling without replacement

Sampling without replacement can be done by leveraging the builtin shuffle method of SyncRNG:

R:

> library(SyncRNG)
> v <- 1:10
> s <- SyncRNG(seed=42)
> # Sample 5 values without replacement
> s$shuffle(v)[1:5]
[1] 6 9 2 4 5

Python:

>>> from SyncRNG import SyncRNG
>>> v = list(range(1, 11))
>>> s = SyncRNG(seed=42)
>>> # Sample 5 values without replacement
>>> s.shuffle(v)[:5]
[6, 9, 2, 4, 5]

Sampling with replacement

Sampling with replacement simply means generating random array indices. Note that these values are not (necessarily) the same as what is returned from R's sample function, even if we specify SyncRNG as the user-defined RNG (see above).

R:

> library(SyncRNG)
> v <- 1:10
> s <- SyncRNG(seed=42)
> u <- NULL
> # Sample 15 values with replacement
> for (k in 1:15) {
+ idx <- s$randi() %% length(v) + 1
+ u <- c(u, v[idx])
+ }
> u
[1] 10  1  1  9  3 10 10 10  9  4  1  9  6  3  6

Python:

>>> from SyncRNG import SyncRNG
>>> v = list(range(1, 11))
>>> s = SyncRNG(seed=42)
>>> u = []
>>> for k in range(15):
...     idx = s.randi() % len(v)
...     u.append(v[idx])
...
>>> u
[10, 1, 1, 9, 3, 10, 10, 10, 9, 4, 1, 9, 6, 3, 6]

Generating Normally Distributed Values

It is also straightforward to implement a Box-Muller transform to generate normally distributed samples.

R:

library(SyncRNG)

# Generate n numbers from N(mu, sigma^2)
syncrng.box.muller <- function(mu, sigma, n, seed=0, rng=NULL)
{
    if (is.null(rng)) {
        rng <- SyncRNG(seed=seed)
    }

    two.pi <- 2 * pi
    ngen <- ceiling(n / 2)
    out <- replicate(2 * ngen, 0.0)

    for (i in 1:ngen) {
        u1 <- 0.0
        u2 <- 0.0

        while (u1 == 0) { u1 <- rng$rand(); }
        while (u2 == 0) { u2 <- rng$rand(); }

        mag <- sigma * sqrt(-2.0 * log(u1))
        z0 <- mag * cos(two.pi * u2) + mu
        z1 <- mag * sin(two.pi * u2) + mu

        out[2*i - 1] = z0;
        out[2*i] = z1;
    }
    return(out[1:n]);
}

> syncrng.box.muller(1.0, 3.0, 11, seed=123)
 [1]  9.6062905  1.4132851  1.0223211  1.7554504 13.5366881  1.0793818
 [7]  2.5734537  1.1689116  0.5588834 -6.1701509  3.2221119

Python:

import math
from SyncRNG import SyncRNG

def syncrng_box_muller(mu, sigma, n, seed=0, rng=None):
    """Generate n numbers from N(mu, sigma^2)"""
    rng = SyncRNG(seed=seed) if rng is None else rng

    two_pi = 2 * math.pi
    ngen = math.ceil(n / 2)
    out = [0.0] * 2 * ngen

    for i in range(ngen):
        u1 = 0.0
        u2 = 0.0

        while u1 == 0:
            u1 = rng.rand()
        while u2 == 0:
            u2 = rng.rand()

        mag = sigma * math.sqrt(-2.0 * math.log(u1))
        z0 = mag * math.cos(two_pi * u2) + mu
        z1 = mag * math.sin(two_pi * u2) + mu

        out[2*i] = z0
        out[2*i + 1] = z1

    return out[:n]

>>> syncrng_box_muller(1.0, 3.0, 11, seed=123)
[9.60629048280169, 1.4132850614143178, 1.0223211130311138, 1.7554504380249232, 
13.536688052073458, 1.0793818230927306, 2.5734537321359925, 
1.1689116061110083, 0.5588834007200677, -6.1701508943037195, 
3.2221118937024342]

Creating the same train/test splits

A common use case for this package is to create the same train and test splits in R and Python. Below are some code examples that illustrate how to do this. Both assume you have a matrix X with 100 rows.

R:

# This function creates a list with train and test indices for each fold
k.fold <- function(n, K, shuffle=TRUE, seed=0)
{
	idxs <- c(1:n)
	if (shuffle) {
		rng <- SyncRNG(seed=seed)
		idxs <- rng$shuffle(idxs)
	}

	# Determine fold sizes
        fsizes <- c(1:K)*0 + floor(n / K)
        mod <- n %% K
        if (mod > 0)
		fsizes[1:mod] <- fsizes[1:mod] + 1

        out <- list(n=n, num.folds=K)
	current <- 1
        for (f in 1:K) {
		fs <- fsizes[f]
		startidx <- current
		stopidx <- current + fs - 1
		test.idx <- idxs[startidx:stopidx]
		train.idx <- idxs[!(idxs %in% test.idx)]
		out$testidxs[[f]] <- test.idx
		out$trainidxs[[f]] <- train.idx
		current <- stopidx
	}
	return(out)
}

# Which you can use as follows
folds <- k.fold(nrow(X), K=10, shuffle=T, seed=123)
for (f in 1:folds$num.folds) {
        X.train <- X[folds$trainidx[[f]], ]
        X.test <- X[folds$testidx[[f]], ]

        # continue using X.train and X.test here
}

Python:

def k_fold(n, K, shuffle=True, seed=0):
    """Generator for train and test indices"""
    idxs = list(range(n))
    if shuffle:
        rng = SyncRNG(seed=seed)
        idxs = rng.shuffle(idxs)

    fsizes = [n // K]*K
    mod = n % K
    if mod > 0:
        fsizes[:mod] = [x+1 for x in fsizes[:mod]]

    current = 0
    for fs in fsizes:
        startidx = current
        stopidx = current + fs
        test_idx = idxs[startidx:stopidx]
        train_idx = [x for x in idxs if not x in test_idx]
        yield train_idx, test_idx
        current = stopidx

# Which you can use as follows
kf = k_fold(X.shape[0], K=3, shuffle=True, seed=123)
for trainidx, testidx in kf:
    X_train = X[trainidx, :]
    X_test = X[testidx, :]

    # continue using X_train and X_test here

Notes

The random numbers are uniformly distributed on [0, 2^32 - 1]. No attention has been paid to thread-safety and you shouldn't use this random number generator for cryptographic applications.

If you have questions, comments, or suggestions about SyncRNG or you encounter a problem, please open an issue on GitHub. Please don't hesitate to contact me, you're helping to make this project better for everyone! If you prefer not to use Github you can email me at gertjanvandenburg at gmail dot com.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

SyncRNG-1.3.3.tar.gz (10.0 kB view details)

Uploaded Source

Built Distributions

SyncRNG-1.3.3-cp310-cp310-win_amd64.whl (19.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

SyncRNG-1.3.3-cp310-cp310-win32.whl (19.3 kB view details)

Uploaded CPython 3.10 Windows x86

SyncRNG-1.3.3-cp310-cp310-musllinux_1_1_x86_64.whl (28.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

SyncRNG-1.3.3-cp310-cp310-musllinux_1_1_i686.whl (28.2 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

SyncRNG-1.3.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (23.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SyncRNG-1.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (23.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

SyncRNG-1.3.3-cp310-cp310-macosx_10_9_x86_64.whl (15.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

SyncRNG-1.3.3-cp39-cp39-win_amd64.whl (19.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

SyncRNG-1.3.3-cp39-cp39-win32.whl (19.3 kB view details)

Uploaded CPython 3.9 Windows x86

SyncRNG-1.3.3-cp39-cp39-musllinux_1_1_x86_64.whl (27.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

SyncRNG-1.3.3-cp39-cp39-musllinux_1_1_i686.whl (28.0 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

SyncRNG-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (23.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SyncRNG-1.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (22.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

SyncRNG-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl (15.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

SyncRNG-1.3.3-cp38-cp38-win_amd64.whl (19.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

SyncRNG-1.3.3-cp38-cp38-win32.whl (19.3 kB view details)

Uploaded CPython 3.8 Windows x86

SyncRNG-1.3.3-cp38-cp38-musllinux_1_1_x86_64.whl (28.0 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

SyncRNG-1.3.3-cp38-cp38-musllinux_1_1_i686.whl (28.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

SyncRNG-1.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (23.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SyncRNG-1.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (23.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

SyncRNG-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl (15.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

SyncRNG-1.3.3-cp37-cp37m-win_amd64.whl (19.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

SyncRNG-1.3.3-cp37-cp37m-win32.whl (19.3 kB view details)

Uploaded CPython 3.7m Windows x86

SyncRNG-1.3.3-cp37-cp37m-musllinux_1_1_x86_64.whl (29.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

SyncRNG-1.3.3-cp37-cp37m-musllinux_1_1_i686.whl (29.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

SyncRNG-1.3.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (23.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SyncRNG-1.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (23.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

SyncRNG-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl (15.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

SyncRNG-1.3.3-cp36-cp36m-win_amd64.whl (19.5 kB view details)

Uploaded CPython 3.6m Windows x86-64

SyncRNG-1.3.3-cp36-cp36m-win32.whl (19.3 kB view details)

Uploaded CPython 3.6m Windows x86

SyncRNG-1.3.3-cp36-cp36m-musllinux_1_1_x86_64.whl (28.1 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

SyncRNG-1.3.3-cp36-cp36m-musllinux_1_1_i686.whl (28.3 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

SyncRNG-1.3.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (23.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

SyncRNG-1.3.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (23.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

SyncRNG-1.3.3-cp36-cp36m-macosx_10_9_x86_64.whl (15.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file SyncRNG-1.3.3.tar.gz.

File metadata

  • Download URL: SyncRNG-1.3.3.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3.tar.gz
Algorithm Hash digest
SHA256 6129dde36c5990c5720b019486d2867613147746223e546f60983a0e5af85ed1
MD5 11304c8185e225db95c7d47d90c26473
BLAKE2b-256 6e03a276423d9d49348f4d905797469bcef6f7cec79446fba0314fa830b308e9

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 19.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 03d2f9598e82df1737d5e9bc3545257015f85cfea7ca6110a091b241e7e5c278
MD5 1c4ed933f176ac7937e4510544aed30a
BLAKE2b-256 7ef37fe538ffe938b7fa83f9c8c351689c700df1c5325353f73ab13be43e926d

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 19.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 222e82ab1b953c677ad3e1c3893afc0cc130993f759b33acd2ec79876a2a2a81
MD5 61a0bd4ec401fe0bbd964e125f2c0e9f
BLAKE2b-256 262a98d35e347bea66d7106110ada71401250b85386e0776ee44a63f0ddfbe51

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp310-cp310-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 28.0 kB
  • Tags: CPython 3.10, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ec98f046db45f14ff06d93853b6ecfa2d6472c76af02b795ac67012e1a638d9b
MD5 30a153f6643b5f325e1e5ce7823d55f9
BLAKE2b-256 a02277212f7fb98e4d0b60680494da51896ca77b74e4d10f6a32aaada424842b

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp310-cp310-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 28.2 kB
  • Tags: CPython 3.10, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 561c99db738325e048be319975c0eaccea870ccdae3cc79d245a2449ae004ae1
MD5 62839bb149b063ba240c85e9abfcc06a
BLAKE2b-256 5937a5ae749dda2e9e4649246d14423d2337f4217734f1902529b7fcc1e8b0b9

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SyncRNG-1.3.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2bf7440ac3d37dfd8f573449f4b4659c699d3d681fc6659cc39a828ff282be22
MD5 7091beeeec37fc32959c85ee4976f200
BLAKE2b-256 5355dd1cdfe31a2f583406b3575a23602ecb2ceb1859b04566eb36da09ff013a

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for SyncRNG-1.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 413af34c4ac72e0f09a848c38a79a21b604115b939c83e4b2a753e3ce20a9fdd
MD5 f19bcd6cd38cfdb8b25e1126917e5307
BLAKE2b-256 380048c37a572f5dcf2ec9ff59e2efed0d7d202b4b4536e6a585b9125697b782

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.7 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3a8ad35b8f4ff1973358ff076895b9a3685487cf860e15124ee058f8117b3a4e
MD5 8c7c57f222fb467ce3518f82c3c7377d
BLAKE2b-256 80d8e8172bf6efa0ab2fd24782497187667004d283319b87a9b3b854d4e27c41

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 19.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9efe31a26007023231ba4e6175c00d41f0b6bce9dbd5944a34fed9290ae660e2
MD5 3e9aa4f98a4f5659c72930f1d97150a0
BLAKE2b-256 beacd068e7c32b8c09fdcd4bde8f1cce4104a8a30d99c6d9408c0eda0fb720c0

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 19.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 abbf66ccca552f89624224187373c8562ba4b172f92fc76733f8f5f49c706af1
MD5 ab9b16bda731455e98886e64b6c2dd50
BLAKE2b-256 48b32965b24748e624ce7b19bb457d2ed1f7ba3e479bf1ee88fa14f8e8370b66

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp39-cp39-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 27.8 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0119cc6a9611b31f2b9f71809c48a0abc9a351509030938ebfc54ea0e0ecba2d
MD5 1bc63edc81cc8251f2c5f46025ea4d49
BLAKE2b-256 e18dfede087988fa5f2f40bd7ceb2e6388fd17afd1698bca923fc03940d511b2

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 28.0 kB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 268b9481630193b7e854abe75a7ee873d43f86f6680937616b38a12b823b6edb
MD5 c3b546a76194c439f53556080f439d07
BLAKE2b-256 5288d59fd6a4d8c6671c5b5c269bf477fb0d4e55bed9293daaa010a09cd8854c

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SyncRNG-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 013188dd8029e857ead7a91331de7bc4e7a538879aab690bb2a884f504f86acb
MD5 b2fb0e2679a8568d35920a9fe838df51
BLAKE2b-256 829e7b73310a151d2faca16d65f7302d7dede290159b0f6c1e1f306053f5eb09

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for SyncRNG-1.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b3e896e4648e89b79990d9e4cb2b26e81c345b6ded02c71f85f061881d8cd5c2
MD5 ffbb0d4b392165f4d56cb0335c570663
BLAKE2b-256 431b7f937c0e0293715dc6292269493c0a5e5ddf32072ac722b5e687be85a675

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.7 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eb6c136aea147bea5f6f0710899018ee123e0e780aaa154e2e9a38d0767fa417
MD5 186dd280b5f40173bec863fa2f604036
BLAKE2b-256 534917052d7552c2b5635333c43afec39b91b5ec14055b04c9503ad4e22e291d

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 19.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 02f9ca53bc90d77946f5b93360b71f27ffeb57d978f983b1648d9917332fc0aa
MD5 8c52d07c165dd5803eac44262ae2068e
BLAKE2b-256 5f04a32c33aed7f1c6ae9cd1bdda1589a2aa4252344b7fb63e8f2cf57db13c51

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 19.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d84001cfcad69bf2defbbdea6ca9d4424d54b6df472b47c52f86c431da324646
MD5 9f308697427a07b636c98fb71b559f0b
BLAKE2b-256 4d70c55a43b1175e491d76b7fc56410448e5475a35d4c15968430146769115a9

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp38-cp38-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 28.0 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 81918ef35e272912344228c29407308c7cefa12caa329c75a7e21de0115e914a
MD5 917ca67e7270a17aa56767c79d6d5ffd
BLAKE2b-256 649cee6b26c8228e5cc2287f227748adc1c97d975248ed67ac4584a631dd1018

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp38-cp38-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 28.2 kB
  • Tags: CPython 3.8, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e37743625c44f979551fcbe0e6d4dbf0c6e7198d6aa958e37d58718c2e92530f
MD5 c8699d83170ebf051f93081935202e6e
BLAKE2b-256 eb6b64b83b6d34c6aab98515e7c1d093c70cffb437dc81521343d7bd4d399afd

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SyncRNG-1.3.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd7b113027a42f1030d5068732c8c7d34b1c80f42062f5fa6b200215ee047efa
MD5 9019b9699249bc52f15c3d75594144ab
BLAKE2b-256 92c2335e0a1fd494a9ff53508914e641f546db84ad9103a058bbe2a8fa7556dd

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for SyncRNG-1.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f9984a34be42f120be2f88862c31852853c9f8a6fa69439da1de49bc9afeed05
MD5 946dccae9d337c62ef52a2a1cc419a8c
BLAKE2b-256 a140839ac2d5b67d6be215a591e4b3c61eb48e777c297d9e518f6399c6eb212e

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.7 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e812c4084813b55fbe3c8f03f2e2d74ffed7797bea04e78a9ac4486ab57bb3bb
MD5 a1eddd4290427d963c7f5fac82eade91
BLAKE2b-256 0e601fe22d84eb2aa1a8d0d792bed718488247addb30732d52c0403a5a87a169

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 19.5 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ae538b156fda5cda9743d77c3e60a3ae32cf273f12001ec3da0d6ffa6b5d3810
MD5 c6c558d0c52f724ceeca4d7113153356
BLAKE2b-256 b0cee5b4b1e784658bb280f5f8a1661f51c38dd60ad9e9c8bef74309f66c556c

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 19.3 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 d8543b3470860f59fb112c61607470108d3529107c65b76f4b200fea7c2779ce
MD5 b0f2d2ef295e4a3cf479a7e2d96822e6
BLAKE2b-256 7149d81b6e5594ea79d919ae69648aebb592b3f034e9bb6f1ff6acd3ed42eec7

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp37-cp37m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 29.1 kB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a0eae3903af155fbde763e50df6c968fd81fbcc2095f6dc5c86fcd3fd8fb328c
MD5 63ba08dd7ac964d1b7e8d4e583b56caa
BLAKE2b-256 0aec6c0a354d8c4789f56e86317aac4df781f5a3a39c5a96745e5617ada3b6a0

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp37-cp37m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 29.3 kB
  • Tags: CPython 3.7m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 76bcda737b1155e287832a67439046e249f91283451daec538a5abcc09cd08a5
MD5 cf93d355ccdadf1758ed3c57ffc6d655
BLAKE2b-256 519df7abf39413abe9a9139673bef306934fd3617b39a56daf3923f3b37f511c

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SyncRNG-1.3.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b002df854800339628a4281cd41413d481c496f408f30aae638cfe3cef2e7307
MD5 da6ff7ae4e97f55f4c7347411938ec5c
BLAKE2b-256 07ee8bcff9b1439ac76677c7a929de7595eb1fe5fec4e896e61cc414b4a4ea9a

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for SyncRNG-1.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2eb29c0e0c69eff1c9616f338edab1b6bf24c644f599b3036d5286d0b8f424c2
MD5 986c537894398de734b978b3e3ff7343
BLAKE2b-256 e8be82b698ff7a932bdb06defd977eb65b7ea5752b818568ad91d339025c8ad5

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 baf87c5f7fec458a457eaf594af8359975b2ec35bfd083998ba079476649e21b
MD5 0f042d3e41a308f2a901e03ba12cfdbb
BLAKE2b-256 a427c7cee43c225783d46e91e7a6b7f7df17734609ea08b6679ff9babe0af90e

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 19.5 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 cc7b8fe9924a6cdf041ca90918b04c6f0aa2f464a2c2c43ea89ba3733099e45c
MD5 35720161be6955f58de40f813cd620c9
BLAKE2b-256 f7354613084e5ef365ebc378da31d14da939864f46f0600ecd3de6d5d74a434c

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 19.3 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 c8ec8c850204d6383a92819f71c0e219ae94e4ddb80abe5e86ede30a5ec133a5
MD5 25f42652c9e70000d53d518300fdb2d0
BLAKE2b-256 7f57ea79a96b4067f23cf59576c67a516f347a56dbcae63bba01e1d5fcef773d

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp36-cp36m-musllinux_1_1_x86_64.whl
  • Upload date:
  • Size: 28.1 kB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dfa17f2ff700aed2b1eda528a1362576fc105a690d35f7c1f006cf24eb7ae221
MD5 57729329c8c234935abd9d43d6898b44
BLAKE2b-256 a223fc5a894ce7bf4998f0ee8d048a4d5b9ab9d365d9c1096e1e50e59da66daa

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp36-cp36m-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 28.3 kB
  • Tags: CPython 3.6m, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b4fc687e9a28a1c8650f364e2266bf36db684cbb6cdb7aae2c1a04d1fd2fc184
MD5 55e28e688d9da1e3916daa07c071143d
BLAKE2b-256 7eb872eaaab820cf3e9d21de4d3491a243f9969757687321a2d60313fa682944

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for SyncRNG-1.3.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ddb7ffb2d9518955ff559f083e57b8664c2f56f043b4ee5c76e90f7a539f5da
MD5 4b1597dfd5b98701126bdf44ee7e17ef
BLAKE2b-256 c7be789d2e6b4d46740da5e387c2b7d879647bbb10ae908e953ccb275335cc84

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for SyncRNG-1.3.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0640ed1427f4e7a23c5948017231cbfcccb9dc882d4aac3094086a54019e85d8
MD5 578c62f0b1d8050414404ec8894c4bc4
BLAKE2b-256 879b531e10c7a971992bfed095be4f3994c49386e44d49c8909d7552a84bf3ad

See more details on using hashes here.

File details

Details for the file SyncRNG-1.3.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: SyncRNG-1.3.3-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.7 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for SyncRNG-1.3.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 345ebda7cef91c2a2a79275acbc9b0440819603ee68585806c452eb2d2ae8e78
MD5 467c48a851309b95f4d6e6fdf49a6991
BLAKE2b-256 f70338a710d4defaa5329844ca8784ea4cc13d862f2a37c6555fd13881c6c55e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page