Skip to main content

TDCR model

Project description

1. About TDCRPy

TDCRPy is a Python code to estimate detection efficiencies of liquid scintillation counters (TDCR or CIEMAT/NIST). The calculation is based on a photo-physical stochastic model allowing to adress complexe decay schemes and radionuclide mixtures.

The code is developped and maintained by the BIPM (MIT license).

Technical details can be found in

http://dx.doi.org/10.13140/RG.2.2.15682.80321

1.1 Installation

TDCRPy requires that the following packages are installed in your Python environement.

pip install importlib.resources configparser numpy tqdm setuptools scipy

or in conda environement:

conda install importlib.resources configparser numpy tqdm setuptools scipy

Then, TDCRPy can be installed.

pip install TDCRPy

To obtain the last version.

pip install TDCRPy --upgrade

The module can be imported in your Python code such as.

import tdcrpy

1.2 Test

To run the unit tests of the package:

python -m unittest tdcrpy.test.test_tdcrpy

or (using the coverage package)

coverage run -m unittest tdcrpy.test.test_tdcrpy
coverage report -m

2. Quick start with the TDCRPy code

import tdcrpy

2.1 Symmetric PMTs

2.1.1 Estimation of detection efficiencies given the free parameter

mode = "eff"               # ask for efficiency calculation
L = 1.2                    # free parameter in keV-1
Rad="Co-60"                # radionuclide
pmf_1="1"                  # relative fraction of the radionulide
N = 1000                   # number of Monte Carlo trials
kB =1.0e-5                 # Birks constant in cm keV-1
V = 10                     # volume of scintillator in mL
result = tdcrpy.TDCRPy.TDCRPy(L, Rad, pmf_1, N, kB, V, mode)
print(f"efficiency S = {round(result[0],4)} +/- {round(result[1],4)}")
print(f"efficiency D = {round(result[2],4)} +/- {round(result[3],4)}")
print(f"efficiency T = {round(result[4],4)} +/- {round(result[5],4)}")
print(f"efficiency D (C/N system) = {round(result[12],4)} +/- {round(result[13],4)}")
efficiency S = 0.9859 +/- 0.0031
efficiency D = 0.9738 +/- 0.0043
efficiency T = 0.9527 +/- 0.0057
efficiency D (C/N system) = 0.9702 +/- 0.0045

2.1.2 Estimation of detection efficiencies given the measured TDCR parameter

TD = 0.977667386529166     # TDCR parameter
result = tdcrpy.TDCRPy.eff(TD, Rad, pmf_1, kB, V)
global free parameter = 1.1991314352332345 keV-1
print(f"free parameter = {round(result[0],4)} keV-1")
print(f"efficiency S = {round(result[2],4)} +/- {round(result[3],4)}")
print(f"efficiency D = {round(result[4],4)} +/- {round(result[5],4)}")
print(f"efficiency T = {round(result[6],4)} +/- {round(result[7],4)}")
print(f"efficiency D (C/N system) = {round(result[14],4)} +/- {round(result[15],4)}")
free parameter = 1.1991 keV-1
efficiency S = 0.9858 +/- 0.001
efficiency D = 0.973 +/- 0.0014
efficiency T = 0.9512 +/- 0.0018
efficiency D (C/N system) = 0.9692 +/- 0.0014

2.2 Asymmetric PMTs

2.2.1 Estimation of detection efficiencies given the free parameters

mode = "eff"               # ask for efficiency calculation
L = (1.1, 1.3, 1.2)        # free parameter in keV-1
Rad="Co-60"                # radionuclide
pmf_1="1"                  # relative fraction of the radionulide
N = 1000                   # number of Monte Carlo trials
kB =1.0e-5                 # Birks constant in cm keV-1
V = 10                     # volume of scintillator in mL
result = tdcrpy.TDCRPy.TDCRPy(L, Rad, pmf_1, N, kB, V)
print(f"efficiency S = {round(result[0],4)} +/- {round(result[1],4)}")
print(f"efficiency D = {round(result[2],4)} +/- {round(result[3],4)}")
print(f"efficiency T = {round(result[4],4)} +/- {round(result[5],4)}")
print(f"efficiency AB = {round(result[6],4)} +/- {round(result[7],4)}")
print(f"efficiency BC = {round(result[8],4)} +/- {round(result[9],4)}")
print(f"efficiency AC = {round(result[10],4)} +/- {round(result[11],4)}")
print(f"efficiency D (C/N system) = {round(result[12],4)} +/- {round(result[13],4)}")
efficiency S = 0.9904 +/- 0.0024
efficiency D = 0.9803 +/- 0.0037
efficiency T = 0.9625 +/- 0.005
efficiency AB = 0.9684 +/- 0.0045
efficiency BC = 0.9696 +/- 0.0044
efficiency AC = 0.9674 +/- 0.0046
efficiency D (C/N system) = 0.9772 +/- 0.0039

2.2.2 Estimation of detection efficiencies given the measured TDCR parameters

TD = [0.977667386529166, 0.992232838598821, 0.992343419459002, 0.99275350064608]
result = tdcrpy.TDCRPy.eff(TD, Rad, pmf_1, kB, V)
global free parameter = 1.2369501044018718 keV-1
free parameters = [1.2369501 1.2369501 1.2369501] keV-1
print(f"Global free parameter = {round(result[0],4)} keV-1")
print(f"free parameter of PMT A = {round(result[1][0],4)} keV-1")
print(f"free parameter of PMT B = {round(result[1][1],4)} keV-1")
print(f"free parameter of PMT C = {round(result[1][2],4)} keV-1")
print(f"efficiency S = {round(result[2],4)} +/- {round(result[3],4)}")
print(f"efficiency D = {round(result[4],4)} +/- {round(result[5],4)}")
print(f"efficiency T = {round(result[6],4)} +/- {round(result[7],4)}")
print(f"efficiency AB = {round(result[8],4)} +/- {round(result[9],4)}")
print(f"efficiency BC = {round(result[10],4)} +/- {round(result[11],4)}")
print(f"efficiency AC = {round(result[12],4)} +/- {round(result[13],4)}")
print(f"efficiency D (C/N system) = {round(result[14],4)} +/- {round(result[15],4)}")
Global free parameter = 1.237 keV-1
free parameter of PMT A = 1.237 keV-1
free parameter of PMT B = 1.237 keV-1
free parameter of PMT C = 1.237 keV-1
efficiency S = 0.9872 +/- 0.0009
efficiency D = 0.9751 +/- 0.0013
efficiency T = 0.9533 +/- 0.0018
efficiency AB = 0.9606 +/- 0.0016
efficiency BC = 0.9606 +/- 0.0016
efficiency AC = 0.9606 +/- 0.0016
efficiency D (C/N system) = 0.9714 +/- 0.0014

2.3 Radionuclide mixture

2.3.1 Estimation of detection efficiencies given the free parameter

mode = "eff"               # ask for efficiency calculation
mode2 = "sym"              # specify that symmetric PMTs is considered
L = 1.2                    # free parameter in keV-1
Rad="Co-60, H-3"           # radionuclides
pmf_1="0.8, 0.2"                  # relatives fractions of the radionulides
N = 1000                   # number of Monte Carlo trials
kB =1.0e-5                 # Birks constant in cm keV-1
V = 10                     # volume of scintillator in mL
result = tdcrpy.TDCRPy.TDCRPy(L, Rad, pmf_1, N, kB, V)
print(f"efficiency S = {round(result[0],4)} +/- {round(result[1],4)}")
print(f"efficiency D = {round(result[2],4)} +/- {round(result[3],4)}")
print(f"efficiency T = {round(result[4],4)} +/- {round(result[5],4)}")
print(f"efficiency D (C/N system) = {round(result[12],4)} +/- {round(result[13],4)}")
efficiency S = 0.9622 +/- 0.0045
efficiency D = 0.9163 +/- 0.007
efficiency T = 0.8482 +/- 0.0096
efficiency D (C/N system) = 0.9037 +/- 0.0074

2.3.2 Estimation of detection efficiencies given the measured TDCR parameter

TD = 0.977667386529166     # TDCR parameter
result = tdcrpy.TDCRPy.eff(TD, Rad, pmf_1, kB, V)
global free parameter = 4.999573818598962 keV-1
print(f"free parameter = {round(result[0],4)} keV-1")
print(f"efficiency S = {round(result[2],4)} +/- {round(result[3],4)}")
print(f"efficiency D = {round(result[4],4)} +/- {round(result[5],4)}")
print(f"efficiency T = {round(result[6],4)} +/- {round(result[7],4)}")
print(f"efficiency D (C/N system) = {round(result[14],4)} +/- {round(result[15],4)}")
free parameter = 4.9996 keV-1
efficiency S = 0.9835 +/- 0.001
efficiency D = 0.9677 +/- 0.0015
efficiency T = 0.9397 +/- 0.002
efficiency D (C/N system) = 0.9629 +/- 0.0016

3. Advanced settings

import tdcrpy as td

3.1 Read the parameters

print("\nparameters in a list: ", td.TDCR_model_lib.readParameters(disp=True))
number of integration bins for electrons = 1000
number of integration bins for alpha = 1000
density = 0.96 g/cm3
Z = 5.2
A = 11.04
depth of spline interp. = 5
energy above which interp. in implemented (for alpha) = 100.0 keV
energy above which interp. in implemented (for electron) = 1.5 keV
activation of the micelle correction = False
diameter of micelle = 2.0 nm
acqueous fraction = 0.1
coincidence resolving time = 50 ns
extended dead time = 10 µs
measurement time = 20 min

parameters in a list:  (1000, 1000, 0.96, 5.2, 11.04, 5, 100.0, 1.5, 2.0, 0.1, 50, 10, 20, False)

3.2 Change energy binning the quenching function of electrons

td.TDCR_model_lib.modifynE_electron(100)
print("New configuration:")
td.TDCR_model_lib.readParameters(disp=True)
# back to the default value
td.TDCR_model_lib.modifynE_electron(1000)
New configuration:
number of integration bins for electrons = 100
number of integration bins for alpha = 1000
density = 0.96 g/cm3
Z = 5.2
A = 11.04
depth of spline interp. = 5
energy above which interp. in implemented (for alpha) = 100.0 keV
energy above which interp. in implemented (for electron) = 1.5 keV
activation of the micelle correction = False
diameter of micelle = 2.0 nm
acqueous fraction = 0.1
coincidence resolving time = 50 ns
extended dead time = 10 µs
measurement time = 20 min

3.3 Change energy binning the quenching function of alpha particles

td.TDCR_model_lib.modifynE_alpha(100)
print("New configuration:")
td.TDCR_model_lib.readParameters(disp=True)
# back to the default value
td.TDCR_model_lib.modifynE_alpha(1000)
New configuration:
number of integration bins for electrons = 1000
number of integration bins for alpha = 100
density = 0.96 g/cm3
Z = 5.2
A = 11.04
depth of spline interp. = 5
energy above which interp. in implemented (for alpha) = 100.0 keV
energy above which interp. in implemented (for electron) = 1.5 keV
activation of the micelle correction = False
diameter of micelle = 2.0 nm
acqueous fraction = 0.1
coincidence resolving time = 50 ns
extended dead time = 10 µs
measurement time = 20 min

3.4 Change the density (in g/cm3) of the LS source

td.TDCR_model_lib.modifyDensity(1.02)
print("New configuration:")
td.TDCR_model_lib.readParameters(disp=True)
# back to the default value
td.TDCR_model_lib.modifyDensity(0.96)
New configuration:
number of integration bins for electrons = 1000
number of integration bins for alpha = 1000
density = 1.02 g/cm3
Z = 5.2
A = 11.04
depth of spline interp. = 5
energy above which interp. in implemented (for alpha) = 100.0 keV
energy above which interp. in implemented (for electron) = 1.5 keV
activation of the micelle correction = False
diameter of micelle = 2.0 nm
acqueous fraction = 0.1
coincidence resolving time = 50 ns
extended dead time = 10 µs
measurement time = 20 min

3.5 Change the mean charge number of the LS source

td.TDCR_model_lib.modifyZ(5.7)
print("New configuration:")
td.TDCR_model_lib.readParameters(disp=True)
# back to the default value
td.TDCR_model_lib.modifyZ(5.2)
New configuration:
number of integration bins for electrons = 1000
number of integration bins for alpha = 1000
density = 0.96 g/cm3
Z = 5.7
A = 11.04
depth of spline interp. = 5
energy above which interp. in implemented (for alpha) = 100.0 keV
energy above which interp. in implemented (for electron) = 1.5 keV
activation of the micelle correction = False
diameter of micelle = 2.0 nm
acqueous fraction = 0.1
coincidence resolving time = 50 ns
extended dead time = 10 µs
measurement time = 20 min

3.6 Change the mean atomic mass number of the LS source

td.TDCR_model_lib.modifyA(12.04)
print("New configuration:")
td.TDCR_model_lib.readParameters(disp=True)
# back to the default value
td.TDCR_model_lib.modifyA(11.04)
New configuration:
number of integration bins for electrons = 1000
number of integration bins for alpha = 1000
density = 0.96 g/cm3
Z = 5.2
A = 12.04
depth of spline interp. = 5
energy above which interp. in implemented (for alpha) = 100.0 keV
energy above which interp. in implemented (for electron) = 1.5 keV
activation of the micelle correction = False
diameter of micelle = 2.0 nm
acqueous fraction = 0.1
coincidence resolving time = 50 ns
extended dead time = 10 µs
measurement time = 20 min

3.7 Change the depht paramerter of the spline interpolation of the quenching function

td.TDCR_model_lib.modifyDepthSpline(7)
print("New configuration:")
td.TDCR_model_lib.readParameters(disp=True)
# back to the default value
td.TDCR_model_lib.modifyDepthSpline(5)
New configuration:
number of integration bins for electrons = 1000
number of integration bins for alpha = 1000
density = 0.96 g/cm3
Z = 5.2
A = 11.04
depth of spline interp. = 7
energy above which interp. in implemented (for alpha) = 100.0 keV
energy above which interp. in implemented (for electron) = 1.5 keV
activation of the micelle correction = False
diameter of micelle = 2.0 nm
acqueous fraction = 0.1
coincidence resolving time = 50 ns
extended dead time = 10 µs
measurement time = 20 min

3.8 Change the energy threshold (in keV) above which the interpolation is applied (for alpha particles)

td.TDCR_model_lib.modifyEinterp_a(200)
print("New configuration:")
td.TDCR_model_lib.readParameters(disp=True)
# back to the default value
td.TDCR_model_lib.modifyEinterp_a(100)
New configuration:
number of integration bins for electrons = 1000
number of integration bins for alpha = 1000
density = 0.96 g/cm3
Z = 5.2
A = 11.04
depth of spline interp. = 5
energy above which interp. in implemented (for alpha) = 200.0 keV
energy above which interp. in implemented (for electron) = 1.5 keV
activation of the micelle correction = False
diameter of micelle = 2.0 nm
acqueous fraction = 0.1
coincidence resolving time = 50 ns
extended dead time = 10 µs
measurement time = 20 min

3.9 Change the energy threshold (in keV) above which the interpolation is applied (for electrons)

td.TDCR_model_lib.modifyEinterp_e(2.0)
print("New configuration:")
td.TDCR_model_lib.readParameters(disp=True)
# back to the default value
td.TDCR_model_lib.modifyEinterp_e(1.5)
New configuration:
number of integration bins for electrons = 1000
number of integration bins for alpha = 1000
density = 0.96 g/cm3
Z = 5.2
A = 11.04
depth of spline interp. = 5
energy above which interp. in implemented (for alpha) = 100.0 keV
energy above which interp. in implemented (for electron) = 2.0 keV
activation of the micelle correction = False
diameter of micelle = 2.0 nm
acqueous fraction = 0.1
coincidence resolving time = 50 ns
extended dead time = 10 µs
measurement time = 20 min

3.10 Activate/desactivate the micelles correction

td.TDCR_model_lib.modifyMicCorr(False)
print("New configuration:")
td.TDCR_model_lib.readParameters(disp=True)
# back to the default value
td.TDCR_model_lib.modifyMicCorr(True)
New configuration:
number of integration bins for electrons = 1000
number of integration bins for alpha = 1000
density = 0.96 g/cm3
Z = 5.2
A = 11.04
depth of spline interp. = 5
energy above which interp. in implemented (for alpha) = 100.0 keV
energy above which interp. in implemented (for electron) = 1.5 keV
activation of the micelle correction = False
diameter of micelle = 2.0 nm
acqueous fraction = 0.1
coincidence resolving time = 50 ns
extended dead time = 10 µs
measurement time = 20 min

3.11 Change the diameter of reverse micelles (in nm)

td.TDCR_model_lib.modifyDiam_micelle(4.0)
print("New configuration:")
td.TDCR_model_lib.readParameters(disp=True)
# back to the default value
td.TDCR_model_lib.modifyDiam_micelle(2.0)
New configuration:
number of integration bins for electrons = 1000
number of integration bins for alpha = 1000
density = 0.96 g/cm3
Z = 5.2
A = 11.04
depth of spline interp. = 5
energy above which interp. in implemented (for alpha) = 100.0 keV
energy above which interp. in implemented (for electron) = 1.5 keV
activation of the micelle correction = False
diameter of micelle = 4.0 nm
acqueous fraction = 0.1
coincidence resolving time = 50 ns
extended dead time = 10 µs
measurement time = 20 min

3.12 Change the acqueous fraction of the LS source

td.TDCR_model_lib.modifyfAq(0.2)
print("New configuration:")
td.TDCR_model_lib.readParameters(disp=True)
# back to the default value
td.TDCR_model_lib.modifyfAq(0.1)
New configuration:
number of integration bins for electrons = 1000
number of integration bins for alpha = 1000
density = 0.96 g/cm3
Z = 5.2
A = 11.04
depth of spline interp. = 5
energy above which interp. in implemented (for alpha) = 100.0 keV
energy above which interp. in implemented (for electron) = 1.5 keV
activation of the micelle correction = False
diameter of micelle = 2.0 nm
acqueous fraction = 0.2
coincidence resolving time = 50 ns
extended dead time = 10 µs
measurement time = 20 min

3.13 Change the coincidence resolving time of the TDCR counter (in ns)

td.TDCR_model_lib.modifyTau(100)
print("New configuration:")
td.TDCR_model_lib.readParameters(disp=True)
# back to the default value
td.TDCR_model_lib.modifyTau(50)
New configuration:
number of integration bins for electrons = 1000
number of integration bins for alpha = 1000
density = 0.96 g/cm3
Z = 5.2
A = 11.04
depth of spline interp. = 5
energy above which interp. in implemented (for alpha) = 100.0 keV
energy above which interp. in implemented (for electron) = 1.5 keV
activation of the micelle correction = False
diameter of micelle = 2.0 nm
acqueous fraction = 0.1
coincidence resolving time = 100 ns
extended dead time = 10 µs
measurement time = 20 min

3.14 Change the extended dead time of the TDCR counter (in µs)¶

td.TDCR_model_lib.modifyDeadTime(100)
print("New configuration:")
td.TDCR_model_lib.readParameters(disp=True)
# back to the default value
td.TDCR_model_lib.modifyDeadTime(10)
New configuration:
number of integration bins for electrons = 1000
number of integration bins for alpha = 1000
density = 0.96 g/cm3
Z = 5.2
A = 11.04
depth of spline interp. = 5
energy above which interp. in implemented (for alpha) = 100.0 keV
energy above which interp. in implemented (for electron) = 1.5 keV
activation of the micelle correction = False
diameter of micelle = 2.0 nm
acqueous fraction = 0.1
coincidence resolving time = 50 ns
extended dead time = 100 µs
measurement time = 20 min

3.15 Change the measurement time (in min)¶

td.TDCR_model_lib.modifyMeasTime(60)
print("New configuration:")
td.TDCR_model_lib.readParameters(disp=True)
# back to the default value
td.TDCR_model_lib.modifyMeasTime(20)
New configuration:
number of integration bins for electrons = 1000
number of integration bins for alpha = 1000
density = 0.96 g/cm3
Z = 5.2
A = 11.04
depth of spline interp. = 5
energy above which interp. in implemented (for alpha) = 100.0 keV
energy above which interp. in implemented (for electron) = 1.5 keV
activation of the micelle correction = False
diameter of micelle = 2.0 nm
acqueous fraction = 0.1
coincidence resolving time = 50 ns
extended dead time = 10 µs
measurement time = 60 min

4. Read Beta spectrum

import tdcrpy as td
import matplotlib.pyplot as plt
import numpy as np
radionuclide = "Sr-89"
mode = "beta-" # 'beta-' or 'beta+'
level = 'tot'  # 0,1,2,3 .... or 'tot'

4.1 Get information about the BetaShape version

print(td.TDCR_model_lib.readBetaShapeInfo(radionuclide,mode,level))
-Beta Spectrum of the main transition from BetaShape 2.4
 (05/2024), DDEP 2004 evaluation and Q-value from AME2020-

4.2 Read the energy spectrum tabulated from BetaShape

energy, probability = td.TDCR_model_lib.readBetaShape(radionuclide,mode,level)

plt.figure("Energy spectrum")
plt.clf()
plt.plot(energy[:-1], probability)
plt.xlabel(r'$E$ /keV', fontsize=14)
plt.ylabel(r'$p(E)$ /(keV$^{-1}$)', fontsize=14)
Text(0, 0.5, '$p(E)$ /(keV$^{-1}$)')

png

4.3 Read the deposited energy spectrum

This spectrum is built by TDCRPy (function buildBetaSpectra) to be used for the analytical TDCR model

energy2, probability2 = td.TDCR_model_lib.readBetaSpectra(radionuclide)

plt.figure("Deposied energy spectrum")
plt.clf()
plt.plot(energy[:-1], probability,'-b', label="emitted energy spectrum")
plt.plot(energy2, probability2,'-r', label="deposited energy spectrum")
plt.legend(fontsize=14)
plt.xlabel(r'$E$ /keV', fontsize=14)
plt.ylabel(r'$p(E)$ /(keV$^{-1}$)', fontsize=14)
Text(0, 0.5, '$p(E)$ /(keV$^{-1}$)')

png


5. Stopping power

import tdcrpy as td
import matplotlib.pyplot as plt
import numpy as np

5.1 Stopping power at a given energy

density = 0.96 # in g/cm3
energy = 100 # keV
result_alpha = td.TDCR_model_lib.stoppingpowerA(energy,rho=density)
result_electron = td.TDCR_model_lib.stoppingpower(energy*1e3,rho=density)
print(f"dE/dx = {result_alpha:.7g} keV/cm for alpha particles" )
print(f"dE/dx = {result_electron*1e3:.4g} keV/cm for electrons" )
dE/dx = 1461120 keV/cm for alpha particles
dE/dx = 3419 keV/cm for electrons

5.2 Plot stopping power curves

energy_vec = np.logspace(-2,4,1000) # in keV
w_a, w_e = [], []
for e in energy_vec:
        w_a.append(td.TDCR_model_lib.stoppingpowerA(e,rho=density))
        w_e.append(1e3*td.TDCR_model_lib.stoppingpower(e*1e3,rho=density))
plt.figure("Stopping power")
plt.clf()
plt.plot(energy_vec,w_a,"-k",label="alpha particles")
plt.plot(energy_vec,w_e,"-r",label="electrons")
plt.xscale('log')
plt.xlabel(r'$E$ /keV', fontsize=14)
plt.ylabel(r'd$E$/d$x$ /(keV/cm)', fontsize=14)
plt.legend()
<matplotlib.legend.Legend at 0x25d905a4c90>

png

6. Scintillation quenching model

import tdcrpy as td
import matplotlib.pyplot as plt
import numpy as np

6.1 Calculate the quenched energy from the Birks model

kB = 0.01 # Birks constant in cm/MeV
ei = 1000  # initial energy in keV
ed = 1000  # deposited energy in keV
nE = 10000  # number of points of the energy linear space
eq_e=td.TDCR_model_lib.E_quench_e(ei*1e3,ed*1e3,kB,nE)*1e-3
print(f"For electrons       => Initial energy = {ei} keV, deposited energy = {ed} keV, quenched energy = {eq_e:.5g} keV")
eq_a=td.TDCR_model_lib.E_quench_a(ei,kB*1e-3,nE)
print(f"For alpha particles => Initial energy = {ei} keV, quenched energy = {eq_a:.5g} keV")
For electrons       => Initial energy = 1000 keV, deposited energy = 1000 keV, quenched energy = 975.24 keV
For alpha particles => Initial energy = 1000 keV, quenched energy = 48.934 keV

6.2 Correction of the micelle effect

The deposited energy ratios were evaluation by GEANT4-DNA [1].

[1] Nedjadi, Y., Laedermann, J.-P., Bochud, F., Bailat, C., 2017. On the reverse micelle effect in liquid scintillation counting. Applied Radiation and Isotopes 125, 94–107. https://doi.org/10.1016/j.apradiso.2017.04.020

energy_vec = np.logspace(-2,4,100) # in keV
fAq=0.1
s05, s1, s2, s3, s4, s5, s6, s7, s8, s10 = [], [], [], [], [], [], [], [], [], []
for e in energy_vec:
    s05.append(td.TDCR_model_lib.micelleLoss(e,fAq=fAq,diam_micelle=0.5))
    s1.append(td.TDCR_model_lib.micelleLoss(e,fAq=fAq,diam_micelle=1.0))
    s2.append(td.TDCR_model_lib.micelleLoss(e,fAq=fAq,diam_micelle=2.0))
    s3.append(td.TDCR_model_lib.micelleLoss(e,fAq=fAq,diam_micelle=3.0))
    s4.append(td.TDCR_model_lib.micelleLoss(e,fAq=fAq,diam_micelle=4.0))
    s5.append(td.TDCR_model_lib.micelleLoss(e,fAq=fAq,diam_micelle=5.0))
    s6.append(td.TDCR_model_lib.micelleLoss(e,fAq=fAq,diam_micelle=6.0))
    s7.append(td.TDCR_model_lib.micelleLoss(e,fAq=fAq,diam_micelle=7.0))
    s8.append(td.TDCR_model_lib.micelleLoss(e,fAq=fAq,diam_micelle=8.0))
    s10.append(td.TDCR_model_lib.micelleLoss(e,fAq=fAq,diam_micelle=10.0))

plt.figure("Deposited energy ratio")
plt.clf()
plt.plot(energy_vec,s05,label="$\Phi$=0.5 nm")
plt.plot(energy_vec,s1,label="$\Phi$=1.0 nm")
plt.plot(energy_vec,s2,label="$\Phi$=2.0 nm")
plt.plot(energy_vec,s3,label="$\Phi$=3.0 nm")
plt.plot(energy_vec,s4,label="$\Phi$=4.0 nm")
plt.plot(energy_vec,s5,label="$\Phi$=5.0 nm")
plt.plot(energy_vec,s6,label="$\Phi$=6.0 nm")
plt.plot(energy_vec,s7,label="$\Phi$=7.0 nm")
plt.plot(energy_vec,s8,label="$\Phi$=8.0 nm")
plt.plot(energy_vec,s10,label="$\Phi$=10.0 nm")
plt.xscale('log')
plt.xlabel(r'$E$ /keV', fontsize=14)
plt.ylabel(r'$S(E)/E$', fontsize=14)
plt.legend()
<matplotlib.legend.Legend at 0x2dab792de10>

png

6.3 Scintillation quenching function from the Birks model (with micelle effect)

energy_vec = np.logspace(-2,4,100) # in keV
fAq = 0.1 # acqueous fraction
diam_micelle = 4.0 # diameter of micelles (in nm) 

eq_a, eq_e, eq_e_m = [], [], []
for e in energy_vec:
        eq_e.append(td.TDCR_model_lib.E_quench_e(e*1e3,e*1e3,kB,nE)*1e-3)
        eq_e_m.append(td.TDCR_model_lib.E_quench_e(e*1e3,e*1e3,kB,nE)*1e-3*td.TDCR_model_lib.micelleLoss(e,fAq=fAq,diam_micelle=diam_micelle))
        eq_a.append(td.TDCR_model_lib.E_quench_a(e,kB*1e-3,nE))

plt.figure("Quenched Energy")
plt.clf()
plt.plot(energy_vec,eq_a/energy_vec,"-k",label="alpha particles")
plt.plot(energy_vec,eq_e/energy_vec,"-r",label="electrons")
plt.plot(energy_vec,eq_e_m/energy_vec,"--r",label="electrons (micelle effect)")
plt.xscale('log')
plt.xlabel(r'$E$ /keV', fontsize=14)
plt.ylabel(r'$Q_t(E)/E$', fontsize=14)
plt.legend()
<matplotlib.legend.Legend at 0x2dab779f910>

png


# 7. Interaction of ionizing particles
# pip install opencv-python
import tdcrpy as td
import matplotlib.pyplot as plt
import numpy as np
import cv2

7.1 Distributions for electrons from 0 keV to 200 keV

A = td.TDCR_model_lib.Matrice10_e_1
C = np.flipud(A[0:])
C = np.clip(C, a_min=7e-6, a_max=1e-1)
C = np.log(C)
C = cv2.GaussianBlur(C, (3, 5), 10)
extent = [A[0,0], A[0,-1], 0, A[0,-1]]
x = np.arange(0, A[0,-1], A[0,-1]/10)
y = np.arange(0, A[0,-1], A[0,-1]/10)

plt.imshow(C, extent=extent, cmap='Greys', interpolation='nearest')
plt.colorbar()
plt.xticks(x)
plt.yticks(y)
plt.xlabel(r"$E_0$ /keV", fontsize=14)
plt.ylabel(r"$E_1$ /keV", fontsize=14)
plt.savefig("electrons_0-200.png")
plt.show()

png

7.2 Distributions for electrons from 200 keV to 2 MeV

A = td.TDCR_model_lib.Matrice10_e_2
C = np.flipud(A[0:])
C = np.clip(C, a_min=1e-5, a_max=1e-0)
C = np.log(C)
C = cv2.GaussianBlur(C, (3, 3), 20)
extent = [A[0,0], A[0,-1], 0, A[0,-1]]
x = np.arange(A[0,0], A[0,-1], A[0,-1]/10)
y = np.arange(0, A[0,-1], A[0,-1]/10)

plt.imshow(C, extent=extent, cmap='Greys', interpolation='nearest')
plt.colorbar()
plt.xticks(x, rotation=20)
plt.yticks(y)
plt.xlabel(r"$E_0$ /keV", fontsize=14)
plt.ylabel(r"$E_1$ /keV", fontsize=14)
plt.tight_layout()
plt.savefig("electrons_200-2000.png")
plt.show()

png

7.3 Distributions for electrons from 2 MeV to 8 MeV

A = td.TDCR_model_lib.Matrice10_e_3
C = np.flipud(A[0:])
C = np.clip(C, a_min=1e-5, a_max=1e-0)
C = np.log(C)
C = cv2.GaussianBlur(C, (3, 3), 20)
extent = [A[0,0], A[0,-1], 0, A[0,-1]]
x = np.arange(A[0,0], A[0,-1], A[0,-1]/10)
y = np.arange(0, A[0,-1], A[0,-1]/10)

plt.imshow(C, extent=extent, cmap='Greys', interpolation='nearest')
plt.colorbar()
plt.xticks(x, rotation=20)
plt.yticks(y)
plt.xlabel(r"$E_0$ /keV", fontsize=14)
plt.ylabel(r"$E_1$ /keV", fontsize=14)
plt.tight_layout()
plt.savefig("electrons_2000-10000.png")
plt.show()

png

7.4 Distributions for photons from 0 keV to 200 keV

A = td.TDCR_model_lib.Matrice10_p_1
C = np.flipud(A[0:])
C = np.clip(C, a_min=1e-7, a_max=1e0)
C = np.log(C)
C = cv2.GaussianBlur(C, (3, 3), 20)
extent = [A[0,0], A[0,-1], 0, A[0,-1]]
x = np.arange(0, A[0,-1], A[0,-1]/10)
y = np.arange(0, A[0,-1], A[0,-1]/10)

plt.imshow(C, extent=extent, cmap='Greys', interpolation='nearest')
plt.colorbar()
plt.xticks(x)
plt.yticks(y)
plt.xlabel(r"$E_0$ /keV", fontsize=14)
plt.ylabel(r"$E_1$ /keV", fontsize=14)
plt.savefig("photons_0-200.png")
plt.show()

x_1 = 1

# Find the column index for the given x_1
col_idx = np.searchsorted(A[0, :], x_1)

# Extract the corresponding y values from the column
y_1 = C[:, col_idx]
x_plot = 0.2*np.arange(0, len(y_1), 1)

print("escape probability = ",np.exp(y_1[-2])/sum(np.exp(y_1)))
# Plot the extracted values
plt.plot(x_plot,np.flipud(y_1))
plt.xlabel(r"$E_1$ /keV", fontsize=14)
plt.ylabel(r"log($P(E_1|E_0)$)", fontsize=14)
plt.title(f"Distribution for $x_1 = {x_1}$ keV")
plt.grid(True)
plt.xlim([0,x_1*1.5])
plt.savefig(f"distribution_x_{x_1}.png")
plt.show()

png

escape probability =  0.5623307322837948

png

7.5 Distributions for photons from 200 keV to 2 MeV

A = td.TDCR_model_lib.Matrice10_p_2
C = np.flipud(A[0:])
C = np.clip(C, a_min=1e-7, a_max=1e0)
C = np.log(C)
C = cv2.GaussianBlur(C, (3, 3), 20)
extent = [A[0,0], A[0,-1], 0, A[0,-1]]
x = np.arange(A[0,0], A[0,-1], A[0,-1]/10)
y = np.arange(0, A[0,-1], A[0,-1]/10)

plt.imshow(C, extent=extent, cmap='Greys', interpolation='nearest')
plt.colorbar()
plt.xticks(x, rotation=20)
plt.yticks(y)
plt.xlabel(r"$E_0$ /keV", fontsize=14)
plt.ylabel(r"$E_1$ /keV", fontsize=14)
plt.tight_layout()
plt.savefig("photons_200-2000.png")
plt.show()

x_1 = 2000

# Find the column index for the given x_1
col_idx = np.searchsorted(A[0, :], x_1)

# Extract the corresponding y values from the column
y_1 = np.log(A[:, col_idx])
x_plot = 2*np.arange(0, len(y_1), 1)

print("escape probability = ",np.exp(y_1[0]))
# Plot the extracted values
plt.plot(x_plot,y_1)
plt.xlabel(r"$E_1$ /keV", fontsize=14)
plt.ylabel(r"log($P(E_1|E_0)$)", fontsize=14)
plt.title(f"Distribution for $x_1 = {x_1}$ keV")
plt.grid(True)
plt.xlim([0,x_1*1.5])
plt.savefig(f"distribution_x_{x_1}.png")
plt.show()

png

escape probability =  1999.9999999999998

png

7.6 Distributions for photons from 2 MeV to 10 MeV

A = td.TDCR_model_lib.Matrice10_p_3
C = np.flipud(A[1:])
C = np.clip(C, a_min=1e-6, a_max=1e-2)
C = np.log(C)
C = cv2.GaussianBlur(C, (5, 5), 20)
extent = [A[0,0], A[0,-1], 0, A[0,-1]]
x = np.arange(A[0,0], A[0,-1], A[0,-1]/10)
y = np.arange(0, A[0,-1], A[0,-1]/10)

plt.imshow(C, extent=extent, cmap='Greys', interpolation='nearest')
plt.colorbar()
plt.xticks(x, rotation=20)
plt.yticks(y)
plt.xlabel(r"$E_0$ /keV", fontsize=14)
plt.ylabel(r"$E_1$ /keV", fontsize=14)
plt.tight_layout()
plt.savefig("photons_2000-10000.png")
plt.show()

x_1 = 5000

# Find the column index for the given x_1
col_idx = np.searchsorted(A[0, :], x_1)

# Extract the corresponding y values from the column
y_1 = C[:, col_idx]
x_plot = 10*np.arange(0, len(y_1), 1)

print("escape probability = ",np.exp(y_1[-1])/sum(np.exp(y_1)))
# Plot the extracted values
plt.plot(x_plot,np.flipud(y_1))
plt.xlabel(r"$E_1$ /keV", fontsize=14)
plt.ylabel(r"log($P(E_1|E_0)$)", fontsize=14)
plt.title(f"Distribution for $x_1 = {x_1}$ keV")
plt.grid(True)
plt.xlim([0,x_1*1.5])
plt.savefig(f"distribution_x_{x_1}.png")
plt.show()

png

escape probability =  0.03360101175407434

png

7.7 Sample a deposited energy given an initial energy

ei = 100  # initial energy in keV
v = 10     # volume of the scintillator in mL
ed_g=td.TDCR_model_lib.energie_dep_gamma2(ei,v)
ed_e=td.TDCR_model_lib.energie_dep_beta2(ei,v)
print(f"The gamma ray of initial energy = {ei} keV, has deposited = {ed_g} keV in the scintillant.")
print(f"The electron of initial energy = {ei} keV, has deposited = {ed_e} keV in the scintillant.")
The gamma ray of initial energy = 100 keV, has deposited = 0 keV in the scintillant.
The electron of initial energy = 100 keV, has deposited = 100 keV in the scintillant.

7.8 Deposited energy of photons as a function of the sintillant volume

V=np.arange(8,21,0.1)
N=100000
E=15    # initial energy in keV
e_vec, ue_vec = [], []
for v in V:
    x=[]
    for i in range(N):
        out=td.TDCR_model_lib.energie_dep_gamma2(15,v)
        x.append(out)
    e_vec.append(np.mean(x))
    ue_vec.append(np.std(x)/np.sqrt(N))
plt.figure(r"Ed vs volume")
plt.clf()
plt.errorbar(V, e_vec, yerr=ue_vec, fmt="-k", label=rf'$E_0$ = {E} keV')
plt.legend()
plt.xlabel(r"$V$ /mL", fontsize=14)
plt.ylabel(r"$\bar{y}$ /(keV)", fontsize=14)

png


8. Efficiency curves

import tdcrpy as td
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
mode = "eff"                # ask for efficiency calculation
Rad="Co-60"                 # radionuclides
pmf_1="1"                   # relatives fractions of the radionulides
N = 1000                     # number of Monte Carlo trials
kB =1.0e-5                  # Birks constant in cm keV-1
V = 10                      # volume of scintillator in mL
L=np.logspace(-3,2,num=100) # free parameter in keV-1

# 8.1 Record decay histories in temporary files
td.TDCRPy.TDCRPy(L[0], Rad, pmf_1, N, kB, V, mode, barp=True, record=True)

effS, u_effS, effD, u_effD, effT, u_effT, effD2, u_effD2 = [], [],[], [],[], [], [], []
for l in tqdm(L, desc="free parameters ", unit=" iterations"):
  out = td.TDCRPy.TDCRPy(l, Rad, pmf_1, N, kB, V, mode, readRecHist=True)
  effS.append(out[2])
  u_effS.append(out[3])
  effD.append(out[2])
  u_effD.append(out[3])
  effT.append(out[4])
  u_effT.append(out[5])
  effD2.append(out[12])
  u_effD2.append(out[13])
 ______  ______  ______ _______  ________
|__  __||  ___ \|  ___||  ___ | |  ____ |
  | |   | |  | || |    | |  | | | |___| |___     ___
  | |   | |  | || |    | |__| | |  _____|\  \   |  |
  | |   | |__| || |____|  __  \ | |       \  \  |  |
  |_|   |_____/ |_____||_|  \__\|_|        \  \_|  |
  +++++++++++++++++++++++++++++++++++++++++/      /
  ________________________________________/      /
 |______________________________________________/     


version 2.0.2
BIPM 2023 - license MIT 
distribution: https://pypi.org/project/TDCRPy 
developement: https://github.com/RomainCoulon/TDCRPy 

start calculation...


Processing: 100%|█████████████████████████████████████████████████████████████| 1000/1000 [00:24<00:00, 40.79 decays/s]
free parameters : 100%|█████████████████████████████████████████████████████| 100/100 [00:02<00:00, 35.96 iterations/s]
effS=np.asarray(effS)
effT=np.asarray(effT)
effD=np.asarray(effD)
effD2=np.asarray(effD2)
u_effS=np.asarray(u_effS)
u_effT=np.asarray(u_effT)
u_effD=np.asarray(u_effD)
u_effD2=np.asarray(u_effD2)

tdcr=effT/effD
u_tdcr=np.sqrt(u_effD**2*effT**2/effD**4+u_effT**2/effD**2)

plt.figure("efficiency vs free parameter")
plt.clf()
plt.errorbar(L,effD,yerr=u_effD,fmt="-k",label="double coincidences")
plt.errorbar(L,effT,yerr=u_effT,fmt="-r",label="triple coincidences")
plt.errorbar(L,effD2,yerr=u_effD2,fmt="-g",label="double coincidences (CIEMAT/NIST)")
plt.xscale('log')
plt.xlabel(r'$L$ /keV$^{-1}$', fontsize=14)
plt.ylabel(r'$\epsilon$', fontsize=14)
plt.legend()

plt.figure("efficiency vs TDCR")
plt.clf()
plt.errorbar(tdcr,effD,xerr=u_tdcr,yerr=u_effD,fmt="-k")
#plt.xscale('log')
plt.xlabel(r'$R_T/R_D$', fontsize=14)
plt.ylabel(r'$\epsilon_{D}$', fontsize=14)

png

png

9. Efficiency with radionuclide mixtures

import tdcrpy as td
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm

9.1 Fixed parameters

mode = "eff"                # ask for efficiency calculation
Rad = "Fe-55, Ni-63"        # list of radionuclides
pmf_1="1"                   # relatives fractions of the radionulides
N = 1000                    # number of Monte Carlo trials
kB =1.0e-5                  # Birks constant in cm keV-1
V = 10                      # volume of scintillator in mL
L=1                         # free parameter in keV-1

9.2 Mixture parameters

C = np.arange(0,1,0.05)     # relative fraction of the second nuclide

9.3 Efficiency calculation

effS, ueffS, effD, ueffD, effT, ueffT, effD2, ueffD2 = [], [], [], [], [], [], [], []
for i in tqdm(C, desc="Processing items"):
    pmf_1 = f"{1-i}, {i}"
    result = td.TDCRPy.TDCRPy(L, Rad, pmf_1, N, kB, V, mode)
    effS.append(result[0]); ueffS.append(result[1])
    effD.append(result[2]); ueffD.append(result[3])
    effT.append(result[4]); ueffT.append(result[5])
    effD2.append(result[12]); ueffD2.append(result[13])
effD = np.asarray(effD); ueffD = np.asarray(ueffD)
effD2 = np.asarray(effD2); ueffD2 = np.asarray(ueffD2)
effT = np.asarray(effT); ueffT = np.asarray(ueffT)
TDCR = effT/effD
Processing items: 100%|████████████████████████████████████████████████████████████████| 20/20 [03:52<00:00, 11.63s/it]

9.4 Plot the efficiency curves

plt.figure("Stopping power")
plt.clf()
plt.errorbar(C,effD,yerr=2*ueffD,fmt="-k",label=r"$\epsilon_D$")
plt.errorbar(C,TDCR,yerr=2*ueffD,fmt="-r",label=r"$\epsilon_T/\epsilon_D$")
plt.errorbar(C,effD2,yerr=2*ueffD2,fmt="-g",label=r"$\epsilon_{D2}$ (CIEMAT/NIST)")
#plt.xscale('log')
plt.xlabel(f'relative fraction of {Rad.split(",")[1]}', fontsize=14)
plt.ylabel(r' ', fontsize=14)
plt.legend()
plt.savefig("stopping_power_plot.png")

png

10. Dynamic efficiency estimation

This notebook presents how to link the TDCRPy package with the radioactivedecay package [1] to simulate dynamic TDCR measurements.

[1] Alex Malins & Thom Lemoine, radioactivedecay: A Python package for radioactive decay calculations. Journal of Open Source Software, 7 (71), 3318 (2022). https://doi.org/10.21105/joss.03318.

# pip install radioactivedecay
import radioactivedecay as rd
import tdcrpy as td
import numpy as np
import matplotlib.pyplot as plt

10.1 Input parameters

radionuclide = 'Mo-99' # parent nuclide decaying during the measurement
activity_unit = "Bq"   # unit of the initial activity
time_unit = "h"        # time unit of the decay process
A0 = 1                 # initial activity (set to 1 in order to obtain relative activities)
coolingTime = 30.0     # the cooling time

mode = "eff"
L = 1                  # free parameter (keV-1)
kB = 1e-5              # Birks constant cm/keV
V = 10                 # volume of scintillator (mL)
N = 1000                # number of simulated decays

10.2 Run radioactivedecay

rad_t0 = rd.Inventory({radionuclide: A0}, activity_unit)
rad_t1 = rad_t0.decay(coolingTime, time_unit)
A_t1 = rad_t1.activities(activity_unit)
As_t1 = sum(A_t1.values())
print(f"Activity at {coolingTime} {time_unit}") 
for key, val in A_t1.items(): print(f"\t {key}: {val} {activity_unit}")
print("Total activity = ", As_t1, activity_unit)
print(f"Relative activity at {coolingTime} {time_unit}")
for key, val in A_t1.items(): print(f"\t {key}: {val/As_t1}")
Activity at 30.0 h
	 Mo-99: 0.7295308772422591 Bq
	 Ru-99: 0.0 Bq
	 Tc-99: 7.44742326547114e-09 Bq
	 Tc-99m: 0.6738301487178286 Bq
Total activity =  1.4033610334075108 Bq
Relative activity at 30.0 h
	 Mo-99: 0.5198454708913215
	 Ru-99: 0.0
	 Tc-99: 5.306847695056773e-09
	 Tc-99m: 0.4801545238018309

10.3 Display the decay graph

nuc = rd.Nuclide(radionuclide)
nuc.plot()

png

10.4 Display the decay curve

rad_t0 .plot(coolingTime, time_unit, yunits=activity_unit)

png

10.5 Efficiency calculation as a function of the time

timeVec = np.arange(0,30,2) # time vector
effS, ueffS, effD, ueffD, effT, ueffT, effD2, ueffD2 = [], [], [], [], [], [], [],[]
for t in timeVec:
    rad_t1 = rad_t0.decay(t, time_unit)
    A_t1 = rad_t1.activities(activity_unit)
    As_t1 = sum(A_t1.values())
    
    rads = ""; pmf1 = ""
    for key, val in A_t1.items():
        if key != "Pb-208" and key != "Ru-99":
            rads += ', '+key
            pmf1 += ', '+str(val/As_t1)
    rads = rads[2:]
    pmf1 = pmf1[2:]
    
    out=td.TDCRPy.TDCRPy(L, rads, pmf1, N, kB, V, mode)
    effD.append(out[2]); ueffD.append(out[3]); effT.append(out[4]); ueffT.append(out[5])
    effS.append(out[0]); ueffS.append(out[1]); effD2.append(out[12]); ueffD2.append(out[13])

effD = np.asarray(effD); effT = np.asarray(effT); ueffD = np.asarray(ueffD); ueffT = np.asarray(ueffT);
effD2 = np.asarray(effD2); effS = np.asarray(effS); ueffD2 = np.asarray(ueffD2); ueffS = np.asarray(ueffS);
tdcr = effT/effD

10.6 Plot efficiency curves

# Create the plot
plt.figure(figsize=(10, 6))
plt.errorbar(timeVec, effS, yerr=ueffS, fmt='o', capsize=5, label=r'$\epsilon_S$')
plt.errorbar(timeVec, effD, yerr=ueffD, fmt='o', capsize=5, label=r'$\epsilon_D$')
plt.errorbar(timeVec, tdcr, yerr=ueffT , fmt='o', capsize=5, label=r'$\epsilon_T/\epsilon_D$')
plt.errorbar(timeVec, effD2, yerr=ueffD2, fmt='o', capsize=5, label=r'$\epsilon_D$ (CIEMAT/NIST)')

# Adding titles and labels
#plt.title('Efficiency (effD) as a Function of Time')
plt.xlabel(f'cooling time /{time_unit}',fontsize=16)
plt.ylabel(r'$\epsilon_D$ and $\epsilon_T/\epsilon_D$',fontsize=16)
plt.legend(fontsize=16)
plt.grid(True)

plt.savefig("plotDecay")
# Show the plot
plt.show()

png



          

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tdcrpy-2.0.9.tar.gz (22.0 MB view details)

Uploaded Source

Built Distribution

TDCRPy-2.0.9-py3-none-any.whl (23.0 MB view details)

Uploaded Python 3

File details

Details for the file tdcrpy-2.0.9.tar.gz.

File metadata

  • Download URL: tdcrpy-2.0.9.tar.gz
  • Upload date:
  • Size: 22.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for tdcrpy-2.0.9.tar.gz
Algorithm Hash digest
SHA256 19654cb77ccbaca4ec31f587df2f32174cc258dc325bbf68f7159addd65f08f7
MD5 391b73f787c684d9417916c27ebc1bee
BLAKE2b-256 ece1cf1e37671e2105af63e3c3e83cb1a51a2276b08f1459b938970f717a966a

See more details on using hashes here.

File details

Details for the file TDCRPy-2.0.9-py3-none-any.whl.

File metadata

  • Download URL: TDCRPy-2.0.9-py3-none-any.whl
  • Upload date:
  • Size: 23.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for TDCRPy-2.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 047a827c28be6501533b4d8a7c9e65334ff343179c3ee5e1106d6c9c2b8bf789
MD5 ad158fe67c047f4cf2f91f992e75ce62
BLAKE2b-256 73aae63ffb5e4c1378f57e5c6629059eacab760ecaa3c3219a86400326d9f7d4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page