Skip to main content

pytorch module for T-Net image segmentation model with DiceLoss and code for visualization of model

Project description

TNet-Segmentation

  • It is a pytorch based Segmentation model inspired by the research paper T. M. Khan, A. Robles-Kelly and S. S. Naqvi, "T-Net: A Resource-Constrained Tiny Convolutional Neural Network for Medical Image Segmentation," 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2022, pp. 1799-1808, doi: 10.1109/WACV51458.2022.00186. published in CVPR 2022

How to install

  • run pip install TNet-Segmentation to install the package

How to use

Creating Model

  • The model takes three parameters: -
    • input_channnel (defaults to 3)
    • emb_size (size of the output channel after first downsampling conv layer.Defaults to 512)
    • num_classes (the num of segmentation classes, defaults to 3)
  • Usage is as simple as below:-
    >>> from TNet_Segmentation import TNet                                
    >>> net = TNet(input_channel=3, emb_size=256, num_classes=3) 
    

Visualizing

  • After creating the model call visualize function as follows:-
    >>> from TNet_Segmentation import visualize 
    >>> visualize(net)
    =================================================================
    Layer (type:depth-idx)                   Param #
    =================================================================
    TNet                                     --
    ├─Conv2d: 1-1                            7,168
    ├─TNetConvBlock: 1-2                     --
    │    └─ModuleList: 2-1                   --
    │    │    └─Conv2d: 3-1                  590,080
    │    │    └─BatchNorm2d: 3-2             512
    │    │    └─ReLU: 3-3                    --
    │    │    └─Conv2d: 3-4                  65,792
    │    │    └─BatchNorm2d: 3-5             512
    │    │    └─Conv2d: 3-6                  2,560
    │    │    └─BatchNorm2d: 3-7             512
    │    │    └─ReLU: 3-8                    --
    │    │    └─MaxPool2d: 3-9               --
    

DiceLoss function

  • Dice Loss is implemented in this library and can be used as follows:
    >>> from TNet_Segmentation import DiceLoss
    >>> loss = DiceLoss()
    
    
    

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tnet_segmentation-1.0.2.tar.gz (3.5 kB view details)

Uploaded Source

Built Distribution

tnet_segmentation-1.0.2-py3-none-any.whl (4.3 kB view details)

Uploaded Python 3

File details

Details for the file tnet_segmentation-1.0.2.tar.gz.

File metadata

  • Download URL: tnet_segmentation-1.0.2.tar.gz
  • Upload date:
  • Size: 3.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.8.18 Windows/10

File hashes

Hashes for tnet_segmentation-1.0.2.tar.gz
Algorithm Hash digest
SHA256 b8dffa1407b599aa3db1138ebdbab452a944edf84317227440fe067c5bcbdd0e
MD5 4e7001eb565d78757fd8046c12ebd737
BLAKE2b-256 11cbdc407f4e6af6d95f9980e80d999ef7ae455c6c4cdac53034a47b6da6a029

See more details on using hashes here.

File details

Details for the file tnet_segmentation-1.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for tnet_segmentation-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 99541d48bf92c15d67e098270c578a93fc178e82d2cb34a211d69607deb1fdf7
MD5 95dab761edfd4c240791f7f14f08ae6c
BLAKE2b-256 6c57dcb24645a233b7db0130ad06def3e773f55e560ac1058306e5b83caced42

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page