Skip to main content

A Python package to evaluate ranks of a Multiple Criteria Decision Making Problem(MCDM) using Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS)

Project description

Project UCS633

Name Kriti Pandey

Roll no 101703292

Group 3COE13

Installation

Use the package manager pip to install TOPSIS-ANALYSIS-kriti.

pip install TOPSIS-ANALYSIS-kriti

Usage

Enter csv filename followed by .csv extentsion, then enter the weights vector with vector values separated by commas, followed by the impacts vector with comma separated signs (+,-)

TOPO_101703292 data.csv [1,1,1,1] [+,+,-,+]

Sample dataset

ID EYES NOSE FOREHEAD LIPS CHIN
S1 0.79 0.62 1.25 60.89 11
S2 0.66 0.44 2.89 63.07 20
S3 0.56 0.31 1.57 62.87 16
S4 0.82 0.67 2.68 70.19 16
S5 0.75 0.56 1.3 80.39 20

Input

TOPO_101703292 PhotogenicFace.csv [1,1,1,1,1] [+,-,+,+,+]

Result

Topsis Selection of DATA

Model | Rank
_______________

1     | 5

2     | 1

3     | 3

4     | 2

5     | 4
_______________

Constraint

Your csv file should not have categorical data

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for TOPSIS-ANALYSIS-kriti, version 1.1.2
Filename, size File type Python version Upload date Hashes
Filename, size TOPSIS_ANALYSIS_kriti-1.1.2-py3-none-any.whl (5.3 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size TOPSIS_ANALYSIS_kriti-1.1.2.tar.gz (3.3 kB) File type Source Python version None Upload date Hashes View

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page