Skip to main content

A Torso Processing Toolbox capable of processing BIDS-compatible datasets, singular niftys, points of interests, segmentations, and much more.

Project description

PyPI version tptbox

Torso Processing ToolBox (TPTBox)

This is a multi-functional package to handle any sort of bids-conform dataset (CT, MRI, ...) It can find, filter, search any BIDS_Family and subjects, and has many functionalities, among them:

  • Easily loop over datasets, and the required files
  • Read, Write Niftys, centroid jsons, ...
  • Reorient, Resample, Shift Niftys, Centroids, labels
  • Modular 2D snapshot generation (different views, MIPs, ...)
  • 3D Mesh generation from segmentation and snapshots from them
  • Registration
  • Logging everything consistently
  • ...

Install the package

conda create -n 3.10 python=3.10 
conda activate 3.10
pip install TPTBox

Install via github:

(you should be in the project folder)

pip install poetry
poetry install

or: Develop mode is really, really nice:

pip install poetry
poetry install --with dev 

Functionalities

Each folder in this package represents a different functionality.

The top-level-hierarchy incorporates the most important files, the BIDS_files.

BIDS_Files

This file builds a data model out of the BIDS file names. It can load a dataset as a BIDS_Global_info file, from which search queries and loops over the dataset can be started. See tutorial_BIDS_files.ipynb for details.

bids_constants

Defines constants for the BIDS nomenclature (sequence-splitting keys, naming conventions...)

vert_constants

Contains definitions and sort order for our intern labels, for vertebrae, POI, ...

Rotation and Resampling

Example rotate and resample.

from TPTBox import NII

nii = NII.load("...path/xyz.nii.gz", seg=True)
# R right, L left
# S superior/up, I inferior/down
# A anterior/front, P posterior/back
img_rot = nii.reorient(axcodes_to=("P", "I", "R"))
img_scale = nii.rescale((1.5, 5, 1))  # in mm as currently rotated
# resample to an other image
img_resampled_to_other = nii.resample_from_to(img_scale)

nii.get_array()  # get numpy array
nii.affine  # Affine matrix
nii.header  # NIFTY header
nii.orientation  # Orientation in 3-Letters
nii.zoom # Scale of the three image axis
nii.shape #shape

Stitching

Python function and script for arbitrary image stitching. See Details

Spineps and Points of Interests (POI) integration

For our Spine segmentation pipline follow the installation of SPINEPS.

SPINEPS will produce two mask: instance and semantic labels. With these we can compute our POIs. There are either center of mass points or surface points with bioloical meaning. See Validation of a Patient-Specific Musculoskeletal Model for Lumbar Load Estimation Generated by an Automated Pipeline From Whole Body CT

from TPTBox import NII, POI, Location, calc_poi_from_subreg_vert
from TPTBox.core.vert_constants import v_name2idx

p = "/dataset-DATASET/derivatives/A/"
semantic_nii = NII.load(f"{p}sub-A_sequ-stitched_acq-sag_mod-T2w_seg-spine_msk.nii.gz", seg=True)
instance_nii = NII.load(f"{p}sub-A_sequ-stitched_acq-sag_mod-T2w_seg-vert_msk.nii.gz", seg=True)
poi_path = f"{p}sub-A_sequ-stitched_acq-sag_mod-T2w_seg-spine_ctd.json"
poi = POI.load(poi_path)
poi = calc_poi_from_subreg_vert(
    instance_nii,
    semantic_nii,
    # buffer_file=poi_path,
    subreg_id=[
        Location.Vertebra_Full,
        Location.Arcus_Vertebrae,
        Location.Spinosus_Process,
        Location.Costal_Process_Left,
        Location.Costal_Process_Right,
        Location.Superior_Articular_Left,
        Location.Superior_Articular_Right,
        Location.Inferior_Articular_Left,
        Location.Inferior_Articular_Right,
        # Location.Vertebra_Corpus_border, CT only
        Location.Vertebra_Corpus,
        Location.Vertebra_Disc,
        Location.Muscle_Inserts_Spinosus_Process,
        Location.Muscle_Inserts_Transverse_Process_Left,
        Location.Muscle_Inserts_Transverse_Process_Right,
        Location.Muscle_Inserts_Vertebral_Body_Left,
        Location.Muscle_Inserts_Vertebral_Body_Right,
        Location.Muscle_Inserts_Articulate_Process_Inferior_Left,
        Location.Muscle_Inserts_Articulate_Process_Inferior_Right,
        Location.Muscle_Inserts_Articulate_Process_Superior_Left,
        Location.Muscle_Inserts_Articulate_Process_Superior_Right,
        Location.Ligament_Attachment_Point_Anterior_Longitudinal_Superior_Median,
        Location.Ligament_Attachment_Point_Posterior_Longitudinal_Superior_Median,
        Location.Ligament_Attachment_Point_Anterior_Longitudinal_Inferior_Median,
        Location.Ligament_Attachment_Point_Posterior_Longitudinal_Inferior_Median,
        Location.Additional_Vertebral_Body_Middle_Superior_Median,
        Location.Additional_Vertebral_Body_Posterior_Central_Median,
        Location.Additional_Vertebral_Body_Middle_Inferior_Median,
        Location.Additional_Vertebral_Body_Anterior_Central_Median,
        Location.Ligament_Attachment_Point_Anterior_Longitudinal_Superior_Left,
        Location.Ligament_Attachment_Point_Posterior_Longitudinal_Superior_Left,
        Location.Ligament_Attachment_Point_Anterior_Longitudinal_Inferior_Left,
        Location.Ligament_Attachment_Point_Posterior_Longitudinal_Inferior_Left,
        Location.Additional_Vertebral_Body_Middle_Superior_Left,
        Location.Additional_Vertebral_Body_Posterior_Central_Left,
        Location.Additional_Vertebral_Body_Middle_Inferior_Left,
        Location.Additional_Vertebral_Body_Anterior_Central_Left,
        Location.Ligament_Attachment_Point_Anterior_Longitudinal_Superior_Right,
        Location.Ligament_Attachment_Point_Posterior_Longitudinal_Superior_Right,
        Location.Ligament_Attachment_Point_Anterior_Longitudinal_Inferior_Right,
        Location.Ligament_Attachment_Point_Posterior_Longitudinal_Inferior_Right,
        Location.Additional_Vertebral_Body_Middle_Superior_Right,
        Location.Additional_Vertebral_Body_Posterior_Central_Right,
        Location.Additional_Vertebral_Body_Middle_Inferior_Right,
        Location.Additional_Vertebral_Body_Anterior_Central_Right,
        Location.Ligament_Attachment_Point_Flava_Superior_Median,
        Location.Ligament_Attachment_Point_Flava_Inferior_Median,
        Location.Vertebra_Direction_Posterior,
        Location.Vertebra_Direction_Inferior,
        Location.Vertebra_Direction_Right,
    ],
)
# poi.save(poi_path)
poi = poi.round(2)
print("Vertebra T4 Vertebra Corpus Center of mass:", poi[v_name2idx["T4"], Location.Vertebra_Corpus])
# rescale/reorante like nii
poi_new = poi.reorient(("P", "I", "R")).rescale((1, 1, 1))
poi_new = poi.resample_from_to(other_nii_or_poi)

Snapshot2D Spine

The snapshot function automatically generates sag, cor, axial cuts in the center of a segmentation.

from TPTBox.spine.snapshot2D import Snapshot_Frame, create_snapshot

ct = Path("Path to CT")
mri = Path("Path to MRI")
vert = Path("Path to Vertebra segmentation")
subreg = Path("Path to Vertebra subregions")
poi_ct = Path("Path to Vertebra poi")
poi_mr = Path("Path to Vertebra poi")

ct_frame = Snapshot_Frame(image=ct, segmentation=vert, centroids=poi_ct, mode="CT", coronal=True, axial=True)
mr_frame = Snapshot_Frame(image=mri, segmentation=vert, centroids=poi_mr, mode="MRI", coronal=True, axial=True)
create_snapshot(snp_path="snapshot.jpg", frames=[ct_frame, mr_frame])

Snapshot3D

Requires additonal python packages: vtk fury xvfbwrapper

from TPTBox.mesh3D.snapshot3D import make_snapshot3D
# all segmentation; view give the rotation of an image
make_snapshot3D("sub-101000_msk.nii.gz","snapshot3D.png",view=["A", "L", "P", "R"]) 
# Select witch segmentation per panel are chosen.
make_snapshot3D("sub-101000_msk.nii.gz","snapshot3D_v2.png",view=["A"], ids_list=[[1,2],[3]]) 

Logger

TBD

Point registration with POIs

TBD

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

tptbox-0.1.5-py3-none-any.whl (1.2 MB view details)

Uploaded Python 3

File details

Details for the file tptbox-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: tptbox-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.14

File hashes

Hashes for tptbox-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 ff798daedeb33d11ef6838b976790817eb4e691fa28a1280c0d5d84c5dff4301
MD5 921fbe9053c173aa0168fd1a22bee2ef
BLAKE2b-256 fe5b3c1b58898737e86398685b46b94e27d05221e9a57ac01aca0917e2294c39

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page