A Torso Processing Toolbox capable of processing BIDS-compatible datasets, singular niftys, points of interests, segmentations, and much more.
Project description
Torso Processing ToolBox (TPTBox)
This is a multi-functional package to handle any sort of bids-conform dataset (CT, MRI, ...) It can find, filter, search any BIDS_Family and subjects, and has many functionalities, among them:
- Easily loop over datasets, and the required files
- Read, Write Niftys, centroid jsons, ...
- Reorient, Resample, Shift Niftys, Centroids, labels
- Modular 2D snapshot generation (different views, MIPs, ...)
- 3D Mesh generation from segmentation and snapshots from them
- Registration
- Logging everything consistently
- ...
Install the package
conda create -n 3.10 python=3.10
conda activate 3.10
pip install TPTBox
Install via github:
(you should be in the project folder)
pip install poetry
poetry install
or: Develop mode is really, really nice:
pip install poetry
poetry install --with dev
Functionalities
Each folder in this package represents a different functionality.
The top-level-hierarchy incorporates the most important files, the BIDS_files.
BIDS_Files
This file builds a data model out of the BIDS file names.
It can load a dataset as a BIDS_Global_info file, from which search queries and loops over the dataset can be started.
See tutorial_BIDS_files.ipynb
for details.
bids_constants
Defines constants for the BIDS nomenclature (sequence-splitting keys, naming conventions...)
vert_constants
Contains definitions and sort order for our intern labels, for vertebrae, POI, ...
Rotation and Resampling
Example rotate and resample.
from TPTBox import NII
nii = NII.load("...path/xyz.nii.gz", seg=True)
# R right, L left
# S superior/up, I inferior/down
# A anterior/front, P posterior/back
img_rot = nii.reorient(axcodes_to=("P", "I", "R"))
img_scale = nii.rescale((1.5, 5, 1)) # in mm as currently rotated
# resample to an other image
img_resampled_to_other = nii.resample_from_to(img_scale)
nii.get_array() # get numpy array
nii.affine # Affine matrix
nii.header # NIFTY header
nii.orientation # Orientation in 3-Letters
nii.zoom # Scale of the three image axis
nii.shape #shape
Stitching
Python function and script for arbitrary image stitching. See Details
Spineps and Points of Interests (POI) integration
For our Spine segmentation pipline follow the installation of SPINEPS.
SPINEPS will produce two mask: instance and semantic labels. With these we can compute our POIs. There are either center of mass points or surface points with bioloical meaning. See Validation of a Patient-Specific Musculoskeletal Model for Lumbar Load Estimation Generated by an Automated Pipeline From Whole Body CT
from TPTBox import NII, POI, Location, calc_poi_from_subreg_vert
from TPTBox.core.vert_constants import v_name2idx
p = "/dataset-DATASET/derivatives/A/"
semantic_nii = NII.load(f"{p}sub-A_sequ-stitched_acq-sag_mod-T2w_seg-spine_msk.nii.gz", seg=True)
instance_nii = NII.load(f"{p}sub-A_sequ-stitched_acq-sag_mod-T2w_seg-vert_msk.nii.gz", seg=True)
poi_path = f"{p}sub-A_sequ-stitched_acq-sag_mod-T2w_seg-spine_ctd.json"
poi = POI.load(poi_path)
poi = calc_poi_from_subreg_vert(
instance_nii,
semantic_nii,
# buffer_file=poi_path,
subreg_id=[
Location.Vertebra_Full,
Location.Arcus_Vertebrae,
Location.Spinosus_Process,
Location.Costal_Process_Left,
Location.Costal_Process_Right,
Location.Superior_Articular_Left,
Location.Superior_Articular_Right,
Location.Inferior_Articular_Left,
Location.Inferior_Articular_Right,
# Location.Vertebra_Corpus_border, CT only
Location.Vertebra_Corpus,
Location.Vertebra_Disc,
Location.Muscle_Inserts_Spinosus_Process,
Location.Muscle_Inserts_Transverse_Process_Left,
Location.Muscle_Inserts_Transverse_Process_Right,
Location.Muscle_Inserts_Vertebral_Body_Left,
Location.Muscle_Inserts_Vertebral_Body_Right,
Location.Muscle_Inserts_Articulate_Process_Inferior_Left,
Location.Muscle_Inserts_Articulate_Process_Inferior_Right,
Location.Muscle_Inserts_Articulate_Process_Superior_Left,
Location.Muscle_Inserts_Articulate_Process_Superior_Right,
Location.Ligament_Attachment_Point_Anterior_Longitudinal_Superior_Median,
Location.Ligament_Attachment_Point_Posterior_Longitudinal_Superior_Median,
Location.Ligament_Attachment_Point_Anterior_Longitudinal_Inferior_Median,
Location.Ligament_Attachment_Point_Posterior_Longitudinal_Inferior_Median,
Location.Additional_Vertebral_Body_Middle_Superior_Median,
Location.Additional_Vertebral_Body_Posterior_Central_Median,
Location.Additional_Vertebral_Body_Middle_Inferior_Median,
Location.Additional_Vertebral_Body_Anterior_Central_Median,
Location.Ligament_Attachment_Point_Anterior_Longitudinal_Superior_Left,
Location.Ligament_Attachment_Point_Posterior_Longitudinal_Superior_Left,
Location.Ligament_Attachment_Point_Anterior_Longitudinal_Inferior_Left,
Location.Ligament_Attachment_Point_Posterior_Longitudinal_Inferior_Left,
Location.Additional_Vertebral_Body_Middle_Superior_Left,
Location.Additional_Vertebral_Body_Posterior_Central_Left,
Location.Additional_Vertebral_Body_Middle_Inferior_Left,
Location.Additional_Vertebral_Body_Anterior_Central_Left,
Location.Ligament_Attachment_Point_Anterior_Longitudinal_Superior_Right,
Location.Ligament_Attachment_Point_Posterior_Longitudinal_Superior_Right,
Location.Ligament_Attachment_Point_Anterior_Longitudinal_Inferior_Right,
Location.Ligament_Attachment_Point_Posterior_Longitudinal_Inferior_Right,
Location.Additional_Vertebral_Body_Middle_Superior_Right,
Location.Additional_Vertebral_Body_Posterior_Central_Right,
Location.Additional_Vertebral_Body_Middle_Inferior_Right,
Location.Additional_Vertebral_Body_Anterior_Central_Right,
Location.Ligament_Attachment_Point_Flava_Superior_Median,
Location.Ligament_Attachment_Point_Flava_Inferior_Median,
Location.Vertebra_Direction_Posterior,
Location.Vertebra_Direction_Inferior,
Location.Vertebra_Direction_Right,
],
)
# poi.save(poi_path)
poi = poi.round(2)
print("Vertebra T4 Vertebra Corpus Center of mass:", poi[v_name2idx["T4"], Location.Vertebra_Corpus])
# rescale/reorante like nii
poi_new = poi.reorient(("P", "I", "R")).rescale((1, 1, 1))
poi_new = poi.resample_from_to(other_nii_or_poi)
Snapshot2D Spine
The snapshot function automatically generates sag, cor, axial cuts in the center of a segmentation.
from TPTBox.spine.snapshot2D import Snapshot_Frame, create_snapshot
ct = Path("Path to CT")
mri = Path("Path to MRI")
vert = Path("Path to Vertebra segmentation")
subreg = Path("Path to Vertebra subregions")
poi_ct = Path("Path to Vertebra poi")
poi_mr = Path("Path to Vertebra poi")
ct_frame = Snapshot_Frame(image=ct, segmentation=vert, centroids=poi_ct, mode="CT", coronal=True, axial=True)
mr_frame = Snapshot_Frame(image=mri, segmentation=vert, centroids=poi_mr, mode="MRI", coronal=True, axial=True)
create_snapshot(snp_path="snapshot.jpg", frames=[ct_frame, mr_frame])
Snapshot3D
Requires additonal python packages: vtk fury xvfbwrapper
from TPTBox.mesh3D.snapshot3D import make_snapshot3D
# all segmentation; view give the rotation of an image
make_snapshot3D("sub-101000_msk.nii.gz","snapshot3D.png",view=["A", "L", "P", "R"])
# Select witch segmentation per panel are chosen.
make_snapshot3D("sub-101000_msk.nii.gz","snapshot3D_v2.png",view=["A"], ids_list=[[1,2],[3]])
Logger
TBD
Point registration with POIs
TBD
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file tptbox-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: tptbox-0.1.5-py3-none-any.whl
- Upload date:
- Size: 1.2 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.10.14
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ff798daedeb33d11ef6838b976790817eb4e691fa28a1280c0d5d84c5dff4301 |
|
MD5 | 921fbe9053c173aa0168fd1a22bee2ef |
|
BLAKE2b-256 | fe5b3c1b58898737e86398685b46b94e27d05221e9a57ac01aca0917e2294c39 |