Skip to main content

Various utilities for time series forecasting.

Project description

TSUtilities v0.0.2

Recent Changes

pip install TSUtilities:

pip install TSUtilities

Example of trend dampening:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np

sns.set_style('darkgrid')
y = np.linspace(0, 100, 100)
plt.plot(y)
plt.show()

y_train = y[:80]
future_y = y[80:]
future_trend = future_y


from TSUtilities.TSTrend.trend_dampen import TrendDampen

dampener = TrendDampen(damp_factor=.7,
                       damp_style='smooth')
dampened_trend = dampener.dampen(future_trend)

Example of Prophet Trend Dampening helper function where ts is your input to prophet:

from TSUtilities.functions import dampen_prophet

prophet = Prophet()
prophet.fit(ts)
fitted = prophet.predict()

# create a future data frame
future = prophet.make_future_dataframe(periods=len(y_test))
forecast = prophet.predict(future)

#get predictions and required data inputs for auto-damping
predictions = forecast.tail(len(y_test))
predicted_trend = predictions['trend'].values
trend_component = fitted['trend'].values
seasonality_component = fitted['additive_terms'].values
forecasts_no_dampen = predictions['yhat'].values
forecasts_damped = dampen_prophet(y=y.values,
                                  fit_df=fitted,
                                  forecast_df=forecast)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

TSUtilities-0.0.5-py3-none-any.whl (11.8 kB view details)

Uploaded Python 3

File details

Details for the file TSUtilities-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: TSUtilities-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 11.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.15

File hashes

Hashes for TSUtilities-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 db57afd25cb7e7757214445c98105c5575318c11f9a411ace5267ca503becb30
MD5 479582a04424612e63ba674a73115316
BLAKE2b-256 f2ccd8244868f24dc0c2e90a21755ebac962128c5505cd1dca4139db973589e2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page