Skip to main content

A python package for Bayesian model mixing

Project description

Taweret

Welcome to the GitHub repo for Taweret, the state of the art Python package for applying Bayesian Model Mixing!

About

Taweret is a new generalized package to help with applying Bayesian model mixing methods, developed by members of the BAND collaboration, to a wide variety of problems in physics.

Features

At present, this package possesses the following BMM methods:

  • Linear model mixing ( With simultaneous model mixing and calibration)
  • Multivariate BMM
  • Bayesian Trees

Documentation

See Taweret's docs webpage here.

Cloning

This repository uses submodules. To clone this repository and automatically checkout all the submodules, use

git clone --recursive https://github.com/bandframework/Taweret.git 

If you want to limit the size of the repository (this or the submodules), you can use the depth flag

git clone --depth=1 https://github.com/bandframework/Taweret.git

Inside the directory containing the cloned repository, you then run

git submodule update --init --depth=1

Prerequisites

The Trees module depends on OpenMPI. Please ensure OpenMPI is installed with shared/built libraries prior to using the Trees module.

Testing

The test suite requires the pytest package to be installed and can be run from the test/ directory. To test the current BMM methods, first install the required packages and then run the following three lines of code:

To installing requirements, first navigate to the Taweret directory. The requirements.txt file is located in the root of this directory. Once in the Taweret directory, then execute the following line of code from the terminal.

pip install -e .

Once all installation is complete, proceed with testing by naviagating to the test/ directory and executing the following three lines of code.

pytest test_bivariate_linear.py
pytest test_gaussian.py
pytest test_trees.py

Windows Users:

Taweret also depends on the OpenBT Mixing package in order to execute the trees modulde. This package is built with OpenMPI thus Windows users can work with the trees module using Windows Subsystem for Linux. Installation instructions are shown below.

OpenBT will run within the Windows 10 Windows Subsystem for Linux (WSL) environment. For instructions on installing WSL, please see (https://ubuntu.com/wsl). We recommend installing the Ubuntu 20.04 WSL build. There are also instructions here on keeping your Ubuntu WSL up to date, or installing additional features like X support. Once you have installed the WSL Ubuntu layer, start the WSL Ubuntu shell from the start menu and then you can begin working with Taweret.

Citing Taweret

If you have benefited from Taweret, please cite our software using the following format:

@inproceedings{Taweret,
    author = "Liyanage, Dan and Semposki, Alexandra and Yannotty, John and Ingles, Kevin",
    title  = "{{Taweret: A Python Package for Bayesian Model Mixing}}",
    year   = "2023",
    url    = {https://github.com/bandframework/Taweret}
}

and our explanatory paper:

@article{Ingles:2023nha,
    author = "Ingles, Kevin and Liyanage, Dananjaya and Semposki, Alexandra C. and Yannotty, John C.",
    title = "{Taweret: a Python package for Bayesian model mixing}",
    eprint = "2310.20549",
    archivePrefix = "arXiv",
    primaryClass = "nucl-th",
    month = "10",
    year = "2023"
}

Please also cite the BAND collaboration software suite using the format here.

BAND SDK compliance

Check out our SDK form here.

Contact

To contact the Taweret team, please submit an issue through the Issues page.

Authors: Kevin Ingles, Dan Liyanage, Alexandra Semposki, and John Yannotty.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Taweret-1.0.1.tar.gz (37.2 kB view details)

Uploaded Source

Built Distribution

Taweret-1.0.1-py3-none-any.whl (38.5 kB view details)

Uploaded Python 3

File details

Details for the file Taweret-1.0.1.tar.gz.

File metadata

  • Download URL: Taweret-1.0.1.tar.gz
  • Upload date:
  • Size: 37.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for Taweret-1.0.1.tar.gz
Algorithm Hash digest
SHA256 4e1f36c1607f3bd9e31e454deb0be49d756860ad3521ac10d0280cccbd731b7d
MD5 b39fc0da3473a101785e76f641f0be88
BLAKE2b-256 af6234cb275a36cab7d856402b8d3682426a53b20b9fb0fa28d7c3af26c0ee30

See more details on using hashes here.

Provenance

File details

Details for the file Taweret-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: Taweret-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 38.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for Taweret-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 149328068b5629ac2717287449078c032ce533380ed447ceb6bf00393cb2fd5e
MD5 c038511ea9016be53b05e761acd195ff
BLAKE2b-256 aad3cf431d180595071e205a9a415870dca96ed73c74e66420b688084f6b8b1f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page