Skip to main content

Implementation of various algorithms for feature selection for text features, based on filter method

Project description

What is it?

TextFeatureSelection is a Python package providing feature selection for text tokens through filter method of feature selection and we can set a threshold to decide which words to be included. There are 4 methods for helping feature selection.

  • Chi-square It measures the lack of independence between term(t) and class(c). It has a natural value of zero if t and c are independent. If it is higher, then term is dependent. It is not reliable for low-frequency terms

  • Mutual information Rare terms will have a higher score than common terms. For multi-class categories, we will calculate MI value for all categories and will take the Max(MI) value across all categories at the word level.

  • Proportional difference How close two numbers are from becoming equal. It helps find unigrams that occur mostly in one class of documents or the other.

  • Information gain It gives discriminatory power of the word.

Input parameters

  • target list object which has categories of labels. for more than one category, no need to dummy code and instead provide label encoded values as list object.
  • input_doc_list List object which has text. each element of list is text corpus. No need to tokenize, as text will be tokenized in the module while processing. target and input_doc_list should have same length.
  • stop_words Words for which you will not want to have metric values calculated. Default is blank
  • metric_list List object which has the metric to be calculated. There are 4 metric which are being computed as 'MI','CHI','PD','IG'. you can specify one or more than one as a list object. Default is ['MI','CHI','PD','IG']. Chi-square(CHI), Mutual information(MI), Proportional difference(PD) and Information gain(IG) are 4 metric which are calculated for each tokenized word from the corpus to aid the user for feature selection.

How to use is it?

from TextFeatureSelection import TextFeatureSelection

#Multiclass classification problem
input_doc_list=['i am very happy','i just had an awesome weekend','this is a very difficult terrain to trek. i wish i stayed back at home.','i just had lunch','Do you want chips?']
target=['Positive','Positive','Negative','Neutral','Neutral']
fsOBJ=TextFeatureSelection(target=target,input_doc_list=input_doc_list)
result_df=fsOBJ.getScore()
print(result_df)


#Binary classification
input_doc_list=['i am content with this location','i am having the time of my life','you cannot learn machine learning without linear algebra','i want to go to mars']
target=[1,1,0,1]
fsOBJ=TextFeatureSelection(target=target,input_doc_list=input_doc_list)
result_df=fsOBJ.getScore()
print(result_df)

Where to get it?

pip install TextFeatureSelection

Dependencies

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

TextFeatureSelection-0.0.5.tar.gz (5.7 kB view details)

Uploaded Source

Built Distribution

TextFeatureSelection-0.0.5-py3-none-any.whl (8.0 kB view details)

Uploaded Python 3

File details

Details for the file TextFeatureSelection-0.0.5.tar.gz.

File metadata

  • Download URL: TextFeatureSelection-0.0.5.tar.gz
  • Upload date:
  • Size: 5.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.9

File hashes

Hashes for TextFeatureSelection-0.0.5.tar.gz
Algorithm Hash digest
SHA256 4dc8ba00dd66e593ec8b5bb460baa7b823a242cad3caece5f4d07ad0682468e5
MD5 3fe026b4e1b9b0f3f39bb8232eee444a
BLAKE2b-256 348745eaa54d31d33da0a942083e4be2a311551b27296697683a230365b39718

See more details on using hashes here.

File details

Details for the file TextFeatureSelection-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: TextFeatureSelection-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 8.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.9

File hashes

Hashes for TextFeatureSelection-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 8d0dbb235db6132e2ffebe5b3aa902cb45f81e182f2fd8682adb9786b9c10725
MD5 62aa882892abd51a36bfa49ba965b529
BLAKE2b-256 d92220a8800bef55d53aa27795309b412d9a585db5e4fc23a356d72001bed63a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page