Skip to main content

No project description provided

Project description

TimeSeriesRNNInterpretor

Build Status

TimeSeriesRNNInterpretor, Interprets the RNN black box model. It internally uses shap.DeepExplainer. We have tried to interpret only single instance with respect to time. We have additionally included monthly effect of the instance.

  • ✨TimeSeriesRNNInterpretor✨

Parameters

Parameters required to Pass

Parameter To be passed Format
model RNN model tensorflow V1 behaviour
background training data sample Numpy array
test Instance data which we want to explain Numpy array
features feature_names or column names df.columns
max_output max output value(1) 1 for binary classification
max_display max display features for waterfall plot a number < no of features
decision_range max display features for decision plot a number < no of features
Measure "absolute" or "relative" or "total " for plotting waterfall plot w.r.t basevalue
dependence_feature_3 3rd feature name to plot dependence plot a feature name or index of feature
dependence_feature_2 2nd feature name to plot dependence plot a feature name or index of the feature

Calling

from TimeSeriesRNNInterpretor import TimeSeriesRNNInterpretor

temp = TimeSeriesInterpretorRNN(model=model,background=background,test=test,features=features,max_output=1,max_display=15,decision_range=30,Measure="absolute",dependence_feature_3="age.",dependence_feature_2="gender")

Plotting Different Plots

temp.global_patient() # To the know the feature importance of a instance
temp.monthly_chart() # timeframe charts of a instance (day,month, or any time frame)
temp.two_month_compare(17, 18) # Specify two timeframe numbers of a instancee to compare (days,months, or any time frames)
temp.single_month(18) # Specify the required specific timeframe number of instance(day,month, or any time frame)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

TimeSeriesInterpretorRNN-0.0.11.tar.gz (4.6 kB view hashes)

Uploaded source

Built Distribution

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page