Skip to main content

Topsis package for MCDM problems

Project description

Topsis-Agam-102016068

for: Project-1 (UCS654) submitted by: Agamjot Singh Roll no: 102016068 Group: 3CS11

What is TOPSIS?

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) originated in the 1980s as a multi-criteria decision making method. TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution, and greatest distance from the negative-ideal solution.


Topsis-Agam-102016068 is a Python library for dealing with Multiple Criteria Decision Making(MCDM) problems by using Technique for Order of Preference by Similarity to Ideal Solution(TOPSIS).

Installation

Use the package manager pip to install Topsis-Agam-102016068.

>> pip install Topsis-Agam-102016068

Usage

Enter csv filename followed by .csv extension, then enter the weights vector with vector values separated by commas, followed by the impacts vector with comma separated signs (+,-), further followed by the filename having .csv extension to store result

>> topsis data.csv "1,1,1,1" "+,-,+,+" res.csv

or vectors can be entered without " "

>> topsis data.csv 1,1,1,1 +,-,+,+ res.csv

But the second representation does not provide for inadvertent spaces between vector values. So, if the input string contains spaces, make sure to enclose it between double quotes (" ").

To view usage help, use

topsis /h

Example

data.csv

The decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R2, Root Mean Squared Error, Correlation, and many more.

Model Correlation R2 RMSE Accuracy
M1 0.79 0.62 1.25 60.89
M2 0.66 0.44 2.89 63.07
M3 0.56 0.31 1.57 62.87
M4 0.82 0.67 2.68 70.19
M5 0.75 0.56 1.3 80.39

Weights (weights) is not already normalised will be normalised later in the code.

Information of benefit positive(+) or negative(-) impact criteria should be provided in impacts.

Input:

topsis data.csv "0.25,0.25,0.25,0.25" "+,+,-,+" result.csv

Output file (result.csv)

Model Correlation R2 RMSE Accuracy Score Rank
M1 0.79 0.62 1.25 60.89 0.7722 2
M2 0.66 0.44 2.89 63.07 0.2255 5
M3 0.56 0.31 1.57 62.87 0.4388 4
M4 0.82 0.67 2.68 70.19 0.5238 3
M5 0.75 0.56 1.3 80.39 0.8113 1

The output file contains columns of input file along with two additional columns having **Score** and **Rank**

Other notes

  • The first column and first row are removed by the library before processing, in attempt to remove indices and headers. So make sure the csv follows the format as shown in data.csv.
  • Make sure the csv does not contain categorical values

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Topsis-Agam-102016068-0.0.1.tar.gz (4.9 kB view details)

Uploaded Source

Built Distribution

Topsis_Agam_102016068-0.0.1-py3-none-any.whl (5.2 kB view details)

Uploaded Python 3

File details

Details for the file Topsis-Agam-102016068-0.0.1.tar.gz.

File metadata

  • Download URL: Topsis-Agam-102016068-0.0.1.tar.gz
  • Upload date:
  • Size: 4.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.2

File hashes

Hashes for Topsis-Agam-102016068-0.0.1.tar.gz
Algorithm Hash digest
SHA256 b6add501f2f8ec7fefdeca6e57ba1afc93cfbece8ba066188d3592cdb0a9a37d
MD5 b1bd586fa876d456651729b251c73aea
BLAKE2b-256 0aee5202777930b6848cde4ceb7de33af0ff48d57d58a822e6f335370dd55356

See more details on using hashes here.

File details

Details for the file Topsis_Agam_102016068-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for Topsis_Agam_102016068-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 8dbf34c9c480285721e1904b8cfc6adb5c577e4380ac1f66579e172634b9eeec
MD5 7e842f579eecba2270526645d95c1636
BLAKE2b-256 14f027d0c8dbfd36de43a2deb22ff6a6ee19a6bdcb3e629d97c531bfbedf486a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page