Skip to main content

Topsis package for MCDM problems

Project description

Topsis-Amit-102003053

For : Assignment(UCS654)
Submitted by: Amit Kumar
Roll no:102003053 Group:3COE3

Description

This is a python package used to implement TOPSIS(Technique of Order Preference Similarity to the Ideal Solution) for MCDA(Multiple criteria decision analysis)


How to use this package:

Installation

pip install Topsis-Amit-102003053

Example:

Sample dataset

Fund Name P1 P2 P3 P4 P5
M1 0.78 0.61 5.5 34.7 10.4
M2 0.88 0.77 5 58.4 16.26
M3 0.61 0.37 5.9 39.9 11.7
M4 0.76 0.58 4.2 57.7 15.81
M5 0.84 0.71 3.2 48 13.19
M6 0.76 0.58 4 68.8 18.54
M7 0.81 0.66 6.5 38.2 11.54
M8 0.81 0.66 3.2 32.8 9.37

Input

In Command Prompt

Enter filename followed by .csv extension, then enter values of weights separated by commas like "1,1,1,2,2",then enter values of impacts separated by commas like "+,+,-,-,+" without giving space in between comma value, then enter name of file where you want to save output followed by .csv extension

topsis data.csv "1,1,1,2,2" "+,+,-,-,+" out.csv

Output

This will be in our Output csv file

Fund Name P1 P2 P3 P4 P5 Topsis Score Rank
M1 0.78 0.61 5.5 34.7 10.4 0.5303740545041122 4
M2 0.88 0.77 5 58.4 16.26 0.5372510220778413 3
M3 0.61 0.37 5.9 39.9 11.7 0.4715707210914604 8
M4 0.76 0.58 4.2 57.7 15.81 0.5099483054760279 6
M5 0.84 0.71 3.2 48 13.19 0.57723478293325 1
M6 0.76 0.58 4 68.8 18.54 0.49447887833737925 7
M7 0.81 0.66 6.5 38.2 11.54 0.5244107252631429 5
M8 0.81 0.66 3.2 32.8 9.37 0.5576533672285703 2

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Topsis-Amit-102003053-1.0.0.tar.gz (3.7 kB view details)

Uploaded Source

Built Distribution

Topsis_Amit_102003053-1.0.0-py3-none-any.whl (4.1 kB view details)

Uploaded Python 3

File details

Details for the file Topsis-Amit-102003053-1.0.0.tar.gz.

File metadata

  • Download URL: Topsis-Amit-102003053-1.0.0.tar.gz
  • Upload date:
  • Size: 3.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.2

File hashes

Hashes for Topsis-Amit-102003053-1.0.0.tar.gz
Algorithm Hash digest
SHA256 d0553bf64b5bc4abb94ba2172c3f4aa2f0c04430602fbe4881835debb2b010d3
MD5 69e99f6b380db980ae8e8a507169f9d0
BLAKE2b-256 4e4a0cee4d92e4454504dd5ce0fa7219ff784244b2f43df7cc3055dbf6fb0cdf

See more details on using hashes here.

File details

Details for the file Topsis_Amit_102003053-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for Topsis_Amit_102003053-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e70e5c319d8191e0d02d033906ef664d86c936bc974dd523a65d96f184381bab
MD5 32e0985fbdcd459c557aabc76e73d73b
BLAKE2b-256 63ffb321d7315a21e2505b289299069e1523823fcc151c3e60631b10045935ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page