This is a topsis package of Deepankar Varma version 0.19
Project description
Topsis_Deepankar_Varma_102003431
TOPSIS
Submitted By: Deepankar Varma-102003431.
Type: Package.
Title: TOPSIS method for multiple-criteria decision making (MCDM).
Version: 0.19.
Date: 2022-01-29.
Author: Deepankar Varma.
Maintainer: Deepankar Varma satwikdpshrit@gmail.com.
Description: Evaluation of alternatives based on multiple criteria using TOPSIS method..
What is TOPSIS?
Technique for **Order **Preference by **Similarity to **Ideal **Solution (TOPSIS) originated in the 1980s as a multi-criteria decision making method. TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution, and greatest distance from the negative-ideal solution.
How to install this package:
pip install Topsis-Deepankar-Varma-102003431==0.19
In Command Prompt
topsis 102003431-data.csv "1,1,1,1,2" "-,+,+,-,+" 102003431-result.csv
Input file (data.csv)
The decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R2, Root Mean Squared Error, Correlation, and many more.
Model | P1 | P2 | P3 | P4 | P5 |
---|---|---|---|---|---|
M1 | 0.7 | 0.71 | 6.7 | 42.1 | 12.59 |
M2 | 0.8 | 0.83 | 7 | 31.7 | 10.11 |
M3 | 0.7 | 0.62 | 4.8 | 46.7 | 13.23 |
M4 | 0.9 | 0.61 | 6.4 | 42.4 | 12.55 |
M5 | 0.9 | 0.88 | 3.6 | 62.2 | 16.91 |
M6 | 0.9 | 0.77 | 6.5 | 51.5 | 14.91 |
M7 | 0.9 | 0.44 | 5.3 | 48.9 | 13.83 |
M8 | 0.9 | 0.86 | 3.4 | 37 | 10.55 |
Weights (weights
) is not already normalised will be normalised later in the code.
Information of benefit positive(+) or negative(-) impact criteria should be provided in impacts
.
Output file (result.csv)
Model | P1 | P2 | P3 | P4 | P5 | Topsis Score | Rank |
---|---|---|---|---|---|---|---|
M1 | 0.93 | 0.86 | 4.4 | 52.6 | 14.7 | 0.457283053 | 6 |
M2 | 0.67 | 0.45 | 3.7 | 47.9 | 13.18 | 0.172274243 | 8 |
M3 | 0.61 | 0.37 | 5.8 | 65 | 17.95 | 0.560480297 | 2 |
M4 | 0.94 | 0.88 | 6 | 40.7 | 12.13 | 0.491036776 | 3 |
M5 | 0.69 | 0.48 | 3.8 | 55.6 | 15.14 | 0.239375223 | 7 |
M6 | 0.93 | 0.86 | 5.3 | 47.1 | 13.55 | 0.486632047 | 4 |
M7 | 0.93 | 0.86 | 6.9 | 69.9 | 19.65 | 0.822186901 | 1 |
M8 | 0.95 | 0.9 | 3.1 | 61.6 | 16.64 | 0.460139442 | 5 |
The output file contains columns of input file along with two additional columns having *Topsis_score* and *Rank*
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for Topsis_Deepankar_Varma_102003431-0.19.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | dd5802a0355128639996b9253339422175daa7bb46e0aa3aea642d5ece0c1acc |
|
MD5 | 872c2f2f360fd7f1d5a8cc3646472575 |
|
BLAKE2b-256 | fd718bbc781bd57be1a98e01ae08e72579f9b7fe79e2a8b2b64ce6b6938240d5 |
Hashes for Topsis_Deepankar_Varma_102003431-0.19-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 76f614bdf5e035f50342e181ef410e4a3e18a863f8a16c7c85b1c25032f39c44 |
|
MD5 | 4a923bb42dba4abb1d42e364f7c177cb |
|
BLAKE2b-256 | aecabefccda4ce0a71cb98d7449d01165841eb69c67346065084d6ba67a8f09b |