Skip to main content

Topsis package for MCDM problems

Project description

Topsis-Gurpreet-102003070

For : Assignment(UCS654)
Submitted by: Gurpreet Singh
Roll no:102003070 Group:3COE3

Description

This is a python package used to implement TOPSIS(Technique of Order Preference Similarity to the Ideal Solution) for MCDA(Multiple criteria decision analysis)


How to use this package:

Installation

pip install Topsis-Gurpreet-102003070

Example:

Sample dataset

Fund Name P1 P2 P3 P4 P5
M1 0.78 0.61 5.5 34.7 10.4
M2 0.88 0.77 5 58.4 16.26
M3 0.61 0.37 5.9 39.9 11.7
M4 0.76 0.58 4.2 57.7 15.81
M5 0.84 0.71 3.2 48 13.19
M6 0.76 0.58 4 68.8 18.54
M7 0.81 0.66 6.5 38.2 11.54
M8 0.81 0.66 3.2 32.8 9.37

Input

In Command Prompt

Enter filename followed by .csv extension, then enter values of weights separated by commas like "1,1,1,2,2",then enter values of impacts separated by commas like "+,+,-,-,+" without giving space in between comma value, then enter name of file where you want to save output followed by .csv extension

topsis data.csv "1,1,1,2,2" "+,+,-,-,+" out.csv

Output

This will be in our Output csv file

Fund Name P1 P2 P3 P4 P5 Topsis Score Rank
M1 0.78 0.61 5.5 34.7 10.4 0.5303740545041122 4
M2 0.88 0.77 5 58.4 16.26 0.5372510220778413 3
M3 0.61 0.37 5.9 39.9 11.7 0.4715707210914604 8
M4 0.76 0.58 4.2 57.7 15.81 0.5099483054760279 6
M5 0.84 0.71 3.2 48 13.19 0.57723478293325 1
M6 0.76 0.58 4 68.8 18.54 0.49447887833737925 7
M7 0.81 0.66 6.5 38.2 11.54 0.5244107252631429 5
M8 0.81 0.66 3.2 32.8 9.37 0.5576533672285703 2

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Topsis-Gurpreet-102003070-1.0.0.tar.gz (3.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file Topsis-Gurpreet-102003070-1.0.0.tar.gz.

File metadata

File hashes

Hashes for Topsis-Gurpreet-102003070-1.0.0.tar.gz
Algorithm Hash digest
SHA256 05d2885c16c2d938fa9bab2a8c6a682a073dfe3708f1b0c3746614ca7f732c3d
MD5 eed4d2a773fab048413b287b7ed393be
BLAKE2b-256 5c56c30e843f8f352a951083a353b2f06bcb9d056e17876639048e8639f28c7d

See more details on using hashes here.

File details

Details for the file Topsis_Gurpreet_102003070-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for Topsis_Gurpreet_102003070-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2dc69a277a3ff626ecda6aacd1c6cd7719e5e63283dcf6f5a96b776bccf967c0
MD5 01933e4dfc6bc2b272fc5da31c76d701
BLAKE2b-256 dd14be0931809ed2e9bc53e8bc56eb44e8023efe4105c21eabb095c0c5ceec8c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page