Compute Topsis scores and ranks for a given csv file using topsis method for multiple-criteria decision making(MCDM)
Project description
Topsis-Shrey-102183040
What is TOPSIS?
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) originated in the 1980s as a multi-criteria decision making method. TOPSIS chooses the alternative of shortest Euclidean distance from the ideal solution, and greatest distance from the negative-ideal solution.
Installation
pip install Topsis-Shrey-102183040
Input csv format
Input file contain three or more columns First column is the object/variable name From 2nd to last columns contain numeric values only
How to use it
Command line arguement topsis Example: topsis inputfile.csv “1,1,1,2” “+,+,-,+” result.csv
Note: The weights and impacts should be ',' seperated, input file should be in pwd.
Sample input data
Model | Corr | Rseq | RMSE | Accuracy |
---|---|---|---|---|
M1 | 0.79 | 0.62 | 1.25 | 60.89 |
M2 | 0.66 | 0.44 | 2.89 | 63.07 |
M3 | 0.56 | 0.31 | 1.57 | 62.87 |
M4 | 0.82 | 0.67 | 2.68 | 70.19 |
M5 | 0.75 | 0.56 | 1.3 | 80.39 |
Sample output data
Model | Corr | Rseq | RMSE | Accuracy | Topsis score | Rank |
---|---|---|---|---|---|---|
M1 | 0.79 | 0.62 | 1.25 | 60.89 | 0.7731301458119156 | 2 |
M2 | 0.66 | 0.44 | 2.89 | 63.07 | 0.22667595732024362 | 5 |
M3 | 0.56 | 0.31 | 1.57 | 62.87 | 0.4389494866695491 | 4 |
M4 | 0.82 | 0.67 | 2.68 | 70.19 | 0.5237626971836845 | 3 |
M5 | 0.75 | 0.56 | 1.3 | 80.39 | 0.8128626132980138 | 1 |
License
© 2023 Shrey Saxena
This repository is licensed under the MIT license. See LICENSE for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for Topsis-Shrey-102183040-1.0.4.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 96dca6729b3f68337bec728c5086d7bc7f1416fea7d004dfbd207cbd01589a4e |
|
MD5 | 6aa53a9915faf302d870d6afa3052539 |
|
BLAKE2b-256 | e0aee4b8ed4536b5cf4c70e0aa7194fe50dee5932163465b6156635ef75f5a26 |
Hashes for Topsis_Shrey_102183040-1.0.4-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0feee72f223aa3e9504af016969be18f5fcacbdd01a3953fe94fcefb419c83db |
|
MD5 | 81850b701f8d261ea5a387eaf019774f |
|
BLAKE2b-256 | 30693cf03e00016554bf6290bfede5c3b2c916bdcbb25b0efc55fab4abb09ef2 |